Report Description Table of Contents Introduction And Strategic Context The Global Transportation Analytics Market is projected to grow at a CAGR of 15.3% , reaching a value of around USD 34.8 billion by 2030 , up from an estimated USD 13.5 billion in 2024 . This growth curve reflects a shift that’s long been in motion: moving from reactive traffic management to data-driven mobility orchestration. Transportation analytics isn’t a new concept, but it’s now hitting a critical inflection point. Infrastructure systems across the world — from urban metros to national highway networks — are under pressure. Population density, logistics disruption, rising emissions, and digital expectations have made traditional models of transport planning nearly obsolete. What’s changing now is the level of intelligence built into these systems. Governments and city planners are deploying predictive analytics, real-time traffic pattern modeling , and AI-powered routing tools to optimize movement. Logistics firms are layering fleet telematics with weather and congestion data to trim fuel costs and hit tighter delivery windows. Even insurance providers and ride-share platforms are tapping transportation data to price risk more dynamically. From a macro lens, multiple forces are converging: Smart city initiatives are accelerating, especially across Asia and Europe. EV and autonomous vehicle rollouts demand new digital infrastructure. Regulatory mandates are pushing for emissions visibility and public transit optimization. Edge computing and IoT are unlocking real-time data ingestion from intersections, tollways , and delivery trucks alike. The stakeholder ecosystem is vast. OEMs, urban mobility startups , governments, cloud providers, freight operators, and consulting firms are all in the mix — either building the analytics engines or depending on their insights. Strategic investments are being made across public and private sectors to create “living networks” — transport systems that adapt, predict, and self-optimize. This market is no longer about fixing traffic jams. It’s about reshaping how humans, goods, and autonomous systems move across physical space — with data as the new infrastructure. Market Segmentation And Forecast Scope The transportation analytics market breaks down across four primary axes: By Component, By Application, By End User, and By Region. Each reflects how stakeholders—from transit agencies to fleet operators—are leveraging data differently depending on their mission, tech maturity, and operational scale. By Component Software This is the core engine: platforms that crunch massive datasets from GPS feeds, sensors, traffic cameras, and mobile apps. Vendors offer tools for route optimization, demand forecasting, congestion prediction, and emissions monitoring. Cloud-native platforms are gaining favor due to scalability and lower upfront costs. Services Covers consulting, integration, managed services, and ongoing analytics support. For many cities and logistics firms, outsourcing analytics expertise is faster and cheaper than building in-house talent. Hardware Includes edge devices, IoT sensors, and onboard vehicle diagnostics units. This segment is critical for data capture—particularly in transit networks and connected vehicle ecosystems. Right now, software holds the lion’s share—over 45% of the market in 2024—but service-led growth is picking up as new adopters look for quick wins without deep tech stacks. By Application Traffic and Incident Management Systems that track congestion, alert about road hazards, and enable dynamic signal control. Transit Planning and Scheduling Tools used by city transit authorities to optimize bus, metro, or light rail systems using ridership trends and peak-load analytics. Logistics and Supply Chain Optimization High-growth use case for shipping, e-commerce, and 3PLs. Predictive analytics cut delivery times and help with route recalibration on the fly. Emissions Monitoring and Environmental Impact Emerging but important, especially in regulated markets like the EU. Real-time CO2 dashboards are now being used to justify low-emission zones or reroute traffic during smog spikes. Infrastructure Planning Used by governments and infrastructure firms to guide capital investments—by simulating demand growth, maintenance cycles, or multimodal shifts. Among these, logistics optimization is seeing the fastest adoption rate, driven by same-day delivery pressures and rising fuel costs. By End User Government and Public Agencies These include transportation departments, municipal authorities, and transit agencies. Their focus is citizen mobility, congestion relief, and safety. Many deploy analytics via smart city programs or public-private partnerships. Private Fleet Operators Think: trucking, e-commerce, or retail distribution arms. Their priority is cost savings and efficiency, using data to fine-tune routes, driver behavior , and vehicle uptime. Infrastructure Developers Engineering firms and transport infrastructure companies using analytics to justify investments, model ROI scenarios, or reduce project delays. Insurance and Risk Management Providers A smaller but growing segment. They analyze driving behavior , accident hotspots, and risk-prone corridors to calibrate pricing models or reduce claims exposure. By Region North America Europe Asia Pacific Latin America Middle East & Africa Each geography represents different maturity levels in analytics adoption. North America leads in fleet-based analytics, while Europe is advancing in emissions modeling . Asia Pacific is gaining fast, largely due to smart mobility pilots in countries like Singapore, China, and India. Scope Note: This segmentation isn’t just descriptive—it mirrors investment patterns. For example, logistics companies may first invest in routing analytics, then layer on emissions tools. Meanwhile, cities may begin with traffic flow monitoring before expanding into predictive transit scheduling. Each segment marks a different entry point—and growth stage—into the analytics maturity curve. Market Trends And Innovation Landscape Transportation analytics is evolving from passive dashboards to real-time, decision-making engines. What was once a set of retrospective reports has become a forward-looking toolset — capable of anticipating congestion, rerouting deliveries, and modeling future infrastructure demand in minutes, not months. Several key trends are shaping this transition. AI + Predictive Modeling Are Moving to the Edge One of the biggest shifts in the past two years is the move from cloud-based analytics to edge-deployed intelligence. Cities like Los Angeles and Seoul are now using AI-powered traffic prediction tools embedded directly in traffic lights and roadside sensors. These systems don’t just monitor — they adapt. For instance, if congestion builds near a school zone, signal timing adjusts autonomously, and the data is synced to navigation apps within seconds. One urban mobility strategist noted, “Predictive modeling used to live in reports. Now it lives in the hardware.” This trend is critical for latency-sensitive environments like autonomous vehicle corridors or critical freight routes where decisions need to be made in real-time, not in a control center an hour later. Multimodal Planning Is Finally Being Unified Transport analytics used to treat rail, road, air, and pedestrian traffic as separate silos. That’s changing. New platforms are layering real-time data across multiple transit modes to simulate traveler flow, transfer behavior , and load balancing in urban systems. Cities are testing unified mobility-as-a-service ( MaaS ) platforms powered by analytics to offer passengers dynamic multimodal journey options based on live conditions. Expect more systems where a metro delay prompts real-time ride-share coupons or bike-share rebalancing — all driven by analytics. Digital Twins Are Coming for Infrastructure Digital twin technology is being rapidly adopted for transport infrastructure — not just in greenfield construction but also in asset monitoring. By creating a virtual model of roads, bridges, or terminals, planners can simulate stress loads, maintenance timelines, or emergency scenarios. Countries like Singapore and the Netherlands are already using digital twins for national traffic simulations and infrastructure planning. This means transportation analytics is no longer about “where things are now,” but “how they’ll behave next week — or 10 years from now.” Carbon Tracking Is Becoming a Compliance Requirement As cities implement congestion charges and low-emission zones, analytics platforms are being tasked with tracking and reporting real-time carbon emissions — down to the vehicle type and time of day. This isn’t just a nice-to-have; in many parts of Europe and California, it’s now mandatory. Environmental analytics are also shaping freight planning, helping carriers select routes based not just on cost but emissions output. That’s a big win for companies facing ESG pressure. AI-Driven Risk and Safety Mapping Another emerging use case: predictive safety analytics. By combining accident history, traffic volume, weather, and driver behavior , platforms are generating real-time risk maps for insurers, city planners, and fleet managers. These tools can trigger warnings, re-routing, or even automated insurance policy adjustments. Several startups are now offering risk-adjusted route planning that flags high-risk zones — useful for ride-share fleets or sensitive cargo shipments. Open Data and API Ecosystems Are Fueling Innovation A quiet but powerful shift: more cities and transport agencies are opening their data to third parties. This is giving rise to a new ecosystem of analytics startups , API-based mobility platforms, and public dashboards. In places like Helsinki and Boston, open analytics ecosystems are helping local businesses, universities, and developers build new transport solutions without starting from scratch. The winners here aren’t always the biggest software firms — they’re the ones who understand how to tap, shape, and scale data in a way that makes it useful across systems. Bottom line? The innovation lens is widening. It’s not just about smoother traffic or faster deliveries. It’s about using transportation analytics to make cities smarter, infrastructure more resilient, and mobility more equitable — one dataset at a time. Competitive Intelligence And Benchmarking The transportation analytics market isn’t dominated by one or two giants. It’s a mixed ecosystem of cloud providers, mobility tech firms, logistics platforms, and specialized analytics startups — each carving out territory based on use case, geography, and integration depth. That said, a handful of players have emerged as key anchors. They’re not just selling software — they’re shaping how movement is optimized across entire cities, highways, and supply chains. IBM IBM has long been a player in transport analytics, especially through its Watson platform and legacy work in public infrastructure. Its strength lies in enterprise-grade analytics and predictive modeling for smart cities. IBM works closely with municipal governments to embed AI into traffic management systems, road maintenance forecasting, and commuter behavior modeling . What gives IBM an edge is its ability to integrate across platforms — from ERP systems to IoT networks — making it a go-to for large, complex urban deployments. Siemens Mobility A dominant force in rail and transit systems, Siemens Mobility is now aggressively building out its digital analytics capabilities. Its platforms offer real-time train telemetry, passenger flow prediction, and multi-station load balancing. Cities like Vienna and Stockholm use Siemens tools to optimize their metro systems. They’re also investing heavily in digital twin capabilities for urban infrastructure and multimodal transport hubs — tying asset performance directly to analytics dashboards. HERE Technologies Originally known for its mapping backbone, HERE has pivoted hard into transport analytics. The company now offers dynamic traffic pattern forecasting, logistics optimization, and location-based analytics for fleets and cities. Its standout strength? High-precision mapping combined with real-time traffic feeds, making it a preferred partner for delivery platforms, EV charging route planners, and autonomous vehicle software firms. INRIX One of the earliest companies to specialize in traffic analytics, INRIX powers real-time roadway intelligence in more than 60 countries. It has strong traction among municipal agencies and insurance providers, offering tools for accident prediction, toll road analytics, and urban congestion scoring. Unlike others chasing cloud-native platforms, INRIX has stayed laser-focused on mobility-specific datasets — and that specialization has kept them highly relevant. TomTom While best known for navigation, TomTom has expanded its footprint in traffic flow modeling and mobility analytics. Its real-time traffic data is embedded in smart city dashboards, fleet platforms, and ride-share routing engines. With a global database of historical and real-time driving patterns, TomTom is used not only for planning but also scenario testing for infrastructure changes. Oracle Oracle’s entry into the market is through logistics and fleet optimization. Its transportation management systems (TMS) are widely used by retailers and 3PLs to integrate analytics into routing, inventory flow, and cost reduction efforts. The company is pushing hard on integrating AI-driven logistics modeling directly into its enterprise cloud solutions. Startups Gaining Traction A number of analytics startups are also gaining serious ground — often by targeting niche pain points or underserved geographies: Urban SDK : Focused on city mobility dashboards and API-based public transport analytics. StreetLight Data : Known for using anonymized smartphone data to model traffic and pedestrian flows — often used in transportation equity analysis. Geotab : A major player in fleet telematics , now adding advanced analytics for fuel use, driver behavior , and route optimization. These emerging players succeed by being nimble, API-friendly, and hyper-focused on usability. Competitive Themes Emerging Integration is now a differentiator . Players that can stitch together traffic data, fleet movement, and weather forecasts into one pane of glass are pulling ahead. Cloud-first strategies are table stakes , but hybrid-cloud models (especially those with edge computing options) are giving companies an advantage in latency-critical deployments. Open ecosystem mindset is winning . Platforms that allow for plug-ins, third-party data feeds, and custom dashboarding are seeing faster uptake — especially by resource-constrained municipalities and mid-sized logistics providers. Vertical specialization is paying off. Whether it’s city planning, last-mile delivery, or public transit, companies that go deep — not broad — are standing out. To be honest, this isn’t a war between tech titans. It’s a chess game between specialists — and those who understand the nuances of physical movement, digital infrastructure, and policy constraints are playing a smarter game. Regional Landscape And Adoption Outlook Transportation analytics is scaling globally, but the shape and speed of that growth vary dramatically by region. It’s not just about budget or tech maturity — it’s about how each geography defines mobility, regulation, and infrastructure priorities. Some regions are doubling down on carbon visibility and autonomous corridors. Others are simply trying to untangle logistics bottlenecks. Let’s break down the landscape. North America This region is still a powerhouse in transportation analytics — especially in freight optimization, traffic prediction, and smart city deployments. The U.S. leads with federal and state-level investments in smart infrastructure. Programs like the USDOT’s “Smart City Challenge” and Vision Zero initiatives have opened doors for analytics integration into traffic management and pedestrian safety. Canada is prioritizing green logistics and climate accountability. Expect increased demand for emissions tracking and public transit route modeling . Cities like Chicago, Los Angeles, and Toronto are piloting AI-powered incident response systems, real-time public transit crowding alerts, and predictive congestion pricing models. What’s driving this region? High congestion costs, aging infrastructure, and pressure to electrify mobility faster than the grid is ready. Europe Europe is pushing the envelope on regulatory-driven analytics adoption. Governments aren’t just encouraging data-driven transport — they’re mandating it. In countries like Germany, Netherlands, and France, cities are required to report emissions metrics and optimize urban logistics to meet EU climate goals. Nordic countries are experimenting with real-time carbon dashboards and AI tools for weather-adaptive road planning. What stands out in Europe is the multimodal focus — train, tram, bike, and walk are all modeled together. Analytics platforms here don’t just measure speed — they measure mobility equity and environmental impact. To be honest, Europe is where transportation analytics is being treated as a public service, not just an optimization tool. Asia Pacific This is the fastest-growing region by a wide margin — and it’s not just because of population. It’s the scale of infrastructure modernization and the region’s embrace of mobile-first solutions. China and India are deploying real-time traffic analytics in tier-1 and tier-2 cities, often as part of massive smart city projects. Japan and South Korea are early movers in autonomous vehicle corridor planning, backed by high-quality mapping and analytics platforms. Singapore remains a case study in analytics-enabled public transit optimization — where even train crowding data influences government subsidy structures. Private logistics giants in the region (like JD Logistics and Delhivery ) are also integrating AI-based route optimization at scale to meet explosive e-commerce demand. Here, transportation analytics isn’t an experiment — it’s embedded in national growth strategies. Latin America Adoption is more uneven here, but momentum is building — especially in freight and urban traffic management. Brazil and Mexico are leading the charge with investments in smart traffic signaling , transit data platforms, and emissions forecasting. Analytics is being used to manage public bus reliability, reduce accidents, and improve port logistics. Budget constraints remain a challenge, but low-cost cloud tools and mobile-first platforms are helping cities leapfrog traditional infrastructure models. What’s interesting in LATAM is the push for analytics as a transparency tool — helping governments justify transit investments and track contractor performance. Middle East & Africa In the Middle East, countries like UAE and Saudi Arabia are pouring billions into futuristic transport hubs — and analytics is at the core. These projects include: AI-powered metro systems in Dubai Digital twin airports in Riyadh Predictive road maintenance in Qatar In Africa, adoption is still nascent but growing fast in freight-heavy corridors (Kenya, Nigeria, South Africa). NGOs and development agencies are supporting analytics tools to improve supply chain resilience, especially for health commodities and agricultural exports. To be realistic, Africa’s transportation analytics growth will be defined by partnerships — not just product rollouts. Mobile-based solutions and public-private platforms will be the enablers. Quick Regional Recap North America: Innovation led by congestion relief and fleet analytics. Europe: Regulation-driven adoption and multimodal integration. Asia Pacific: Explosive demand driven by infrastructure scale and e-commerce. Latin America: Urban use cases rising despite funding constraints. Middle East & Africa: Future-forward deployments and donor-backed adoption. Bottom line? Transportation analytics isn't a one-size-fits-all solution. It’s shaped by where a region is on its mobility journey — and who’s willing to act on what the data reveals. End-User Dynamics And Use Case Transportation analytics doesn’t serve one type of customer — it serves an entire mobility ecosystem. From city governments to last-mile delivery fleets, each end user brings a different operational goal and tech maturity level. What unites them is the need to make faster, data-backed decisions about how people and goods move. Let’s break down how the major end-user categories are engaging with analytics platforms — and what they’re looking to solve. Public Agencies and City Planners These are typically the largest adopters of transportation analytics, especially in developed markets. Their goals revolve around: Reducing congestion Improving safety Enhancing public transit efficiency Meeting sustainability mandates They often invest in integrated mobility platforms that include real-time traffic sensors, historical pattern analysis, and demand simulation tools. A common challenge? Data silos. Different departments might manage traffic signals, bus routes, and pedestrian zones separately. Analytics platforms that offer unified dashboards — and can plug into legacy systems — get preference. Most cities don’t want to rebuild their infrastructure — they want software that makes the existing one smarter. Logistics and Fleet Operators Private fleet managers (e.g., e-commerce delivery firms, 3PL providers, postal services) are highly analytics-driven — but for different reasons than governments. Their top priorities are: Route optimization Fuel efficiency Driver behavior analysis Real-time delivery tracking These companies often need platforms that integrate with onboard telematics, weather feeds, traffic updates, and customer demand signals. The ROI is crystal clear: better routes mean lower fuel costs and more on-time deliveries. What’s changed recently is the shift from batch analytics (daily reports) to real-time micro-decisions. If a warehouse gets hit with a delay at 3 PM, dispatchers now want reroutes by 3:02 PM — not end-of-day logs. Public Transit Authorities Metro systems, bus networks, and light rail operators are increasingly using analytics to manage: Passenger flow Vehicle dispatching Real-time delay management Route redesigns based on ridership trends They’re also starting to embrace passenger experience analytics, using mobile app data or sensor feeds to understand where bottlenecks or crowding occur — and intervene before service quality dips. In many major cities, analytics now determine whether a train gets more cars at peak hours — or fewer during off-peak to reduce costs. Infrastructure Developers and Urban Planners For infrastructure developers — including civil engineers, contractors, and consultants — transportation analytics is a planning tool. It helps simulate future demand, prioritize maintenance, and test investment scenarios. Digital twins, in particular, are gaining traction. These stakeholders use analytics to answer questions like: “What happens if traffic grows 15% in this corridor?” “How long will this bridge last under current usage?” “Where should we build the next transit hub based on future population models?” Here, analytics isn’t about real-time routing — it’s about long-range simulation and risk modeling . Insurers and Risk Managers Still a niche user base, but growing fast. Insurance providers and risk consultants are tapping analytics to: Identify accident-prone routes Price premiums based on fleet behavior Flag unsafe driving patterns before a claim happens This is especially relevant in the commercial fleet segment, where real-time safety scoring can impact both premiums and legal risk. Use Case Highlight A regional logistics firm in Eastern Europe faced rising costs and missed delivery windows due to erratic urban traffic. The firm had GPS data but lacked insights. They deployed a cloud-based analytics platform that merged GPS signals, real-time congestion data, and weather forecasts. It auto-generated optimal delivery routes every morning — and dynamically rerouted drivers based on live incidents. Within 4 months: Fuel usage dropped by 11% On-time delivery rate rose from 78% to 91% Average delivery window shrank by 12 minutes More importantly, dispatchers shifted from firefighting mode to strategic oversight. Drivers reported lower stress, and customer satisfaction scores improved. In short, the platform didn’t just move trucks faster. It made the entire operation more predictable — and that’s where the value lives. Final thought ? End users don’t care about beautiful dashboards — they care about results. The most successful analytics platforms are the ones that embed seamlessly into real workflows, improve outcomes quietly, and scale without disrupting operations. Recent Developments + Opportunities & Restraints Recent Developments (2023–2025) Siemens Mobility expanded its analytics offerings by integrating AI-powered real-time passenger load management tools across several European metro networks. This helps operators redistribute service capacity on the fly—improving both crowd management and commuter experience. HERE Technologies partnered with a leading EV charging platform to launch a location intelligence service. This combines dynamic traffic data with battery range predictions, allowing electric vehicle drivers to avoid congested routes and optimize charging stops. INRIX launched a predictive maintenance analytics solution tailored for municipal road networks. Using historical traffic and weather data, cities can now forecast road degradation and prioritize repairs before potholes or surface failures occur. Urban SDK, a rising analytics startup, secured new municipal contracts in the U.S. to provide API-driven dashboards for transit planning, enabling real-time crowd flow tracking and zoning impact modeling for urban planners. TomTom introduced a new real-time emissions heatmap service in partnership with several European cities. This visual tool helps policymakers evaluate the carbon impact of vehicle movement patterns and propose low-emission zones more effectively. Opportunities Edge-deployed AI is a breakout opportunity, particularly in latency-sensitive environments like autonomous delivery corridors and emergency vehicle routing. Vendors offering low-latency, high-fidelity insights directly from roadside or in-vehicle hardware are likely to lead next-gen deployments. Climate accountability mandates are accelerating analytics adoption. Regions with aggressive ESG goals are mandating CO2 tracking, pushing analytics providers to offer real-time, regulatory-compliant emissions dashboards. Unified multimodal analytics platforms are becoming essential. Cities and logistics providers are increasingly seeking tools that don’t just analyze one mode (like road traffic) but can simulate interactions across trains, buses, bikes, and pedestrian flows in real time. Restraints Integration complexity across legacy infrastructure is still a major hurdle. Many public sector agencies operate decades-old systems that aren’t easily compatible with modern analytics platforms, stalling full-scale deployments. Data governance and privacy regulations are slowing down platform rollouts, especially in regions with stringent rules on anonymized movement data. Balancing insight generation with ethical data usage remains a delicate challenge. 7.1. Report Coverage Table Report Attribute Details Forecast Period 2024 – 2030 Market Size Value in 2024 USD 13.5 Billion Revenue Forecast in 2030 USD 34.8 Billion Overall Growth Rate CAGR of 15.3% (2024 – 2030) Base Year for Estimation 2024 Historical Data 2019 – 2023 Unit USD Million, CAGR (2024 – 2030) Segmentation By Component, By Application, By End User, By Geography By Component Software, Hardware, Services By Application Traffic & Incident Management, Transit Planning, Logistics Optimization, Environmental Monitoring, Infrastructure Planning By End User Government & Public Agencies, Fleet Operators, Infrastructure Developers, Insurance & Risk Management Firms By Region North America, Europe, Asia Pacific, Latin America, Middle East & Africa Country Scope U.S., Canada, Germany, U.K., France, China, India, Japan, Brazil, UAE, South Africa Market Drivers - Acceleration of smart city programs - Rising need for real-time logistics and fleet intelligence - Increasing investments in digital transportation infrastructure Customization Option Available upon request Frequently Asked Question About This Report Q1: How big is the transportation analytics market? A1: The global transportation analytics market is valued at USD 13.5 billion in 2024, and is projected to reach USD 34.8 billion by 2030. Q2: What is the CAGR for the transportation analytics market during the forecast period? A2: The market is expected to expand at a CAGR of 15.3% from 2024 to 2030. Q3: Who are the major players in the transportation analytics market? A3: Key players include IBM, HERE Technologies, INRIX, TomTom, Oracle, Siemens Mobility, and StreetLight Data. Q4: Which region dominates the transportation analytics market? A4: North America leads the market, driven by high smart city investments, freight digitization, and advanced public transportation systems. Q5: What factors are driving growth in the transportation analytics market? A5: Growth is fueled by real-time traffic intelligence needs, green mobility goals, and infrastructure modernization efforts across major economies. Executive Summary Market Overview Market Attractiveness by Component, Application, End User, and Region Strategic Insights from Key Executives (CXO Perspective) Historical Market Size and Future Projections (2019–2030) Summary of Market Segmentation by Component, Application, End User, and Region Market Share Analysis Leading Players by Revenue and Market Share Market Share Analysis by Component, Application, and End User Investment Opportunities in the Transportation Analytics Market Key Developments and Innovations Mergers, Acquisitions, and Strategic Partnerships High-Growth Segments for Investment Market Introduction Definition and Scope of the Study Market Structure and Key Findings Overview of Top Investment Pockets Research Methodology Research Process Overview Primary and Secondary Research Approaches Market Size Estimation and Forecasting Techniques Market Dynamics Key Market Drivers Challenges and Restraints Impacting Growth Emerging Opportunities for Stakeholders Impact of Behavioral and Regulatory Factors Technological Advances in Transportation Analytics Global Transportation Analytics Market Analysis Historical Market Size and Volume (2019–2023) Market Size and Volume Forecasts (2024–2030) Market Analysis by Component: Software Hardware Services Market Analysis by Application: Traffic and Incident Management Transit Planning and Scheduling Logistics and Supply Chain Optimization Emissions Monitoring and Environmental Impact Infrastructure Planning Market Analysis by End User: Government & Public Agencies Fleet Operators Infrastructure Developers Insurance & Risk Management Firms Market Analysis by Region: North America Europe Asia-Pacific Latin America Middle East & Africa Regional Market Analysis North America Transportation Analytics Market Historical Market Size and Volume (2019–2023) Market Size and Volume Forecasts (2024–2030) Market Analysis by Component, Application, and End User Country-Level Breakdown: United States, Canada, Mexico Europe Transportation Analytics Market Country-Level Breakdown: Germany, United Kingdom, France, Italy, Spain, Rest of Europe Asia-Pacific Transportation Analytics Market Country-Level Breakdown: China, India, Japan, South Korea, Rest of Asia-Pacific Latin America Transportation Analytics Market Country-Level Breakdown: Brazil, Argentina, Rest of Latin America Middle East & Africa Transportation Analytics Market Country-Level Breakdown: GCC Countries, South Africa, Rest of Middle East & Africa Key Players and Competitive Analysis IBM HERE Technologies INRIX TomTom Siemens Mobility Oracle StreetLight Data Additional Startups and Regional Players Appendix Abbreviations and Terminologies Used in the Report References and Sources List of Tables Market Size by Component, Application, End User, and Region (2024–2030) Regional Market Breakdown by Segment Type (2024–2030) List of Figures Market Drivers, Challenges, and Opportunities Regional Market Snapshot Competitive Landscape by Market Share Growth Strategies Adopted by Key Players Market Share by Component and Application (2024 vs. 2030)