Report Description Table of Contents Introduction And Strategic Context The Global Simultaneous Localization And Mapping ( SLAM ) Market will witness a robust CAGR of 17.2% , valued at USD 3.1 billion in 2024 , expected to appreciate and reach USD 7.9 billion by 2030 , confirms Strategic Market Research. SLAM isn’t just a mapping technology anymore. It’s the core enabler behind some of the most advanced automation systems across robotics, augmented reality (AR), autonomous vehicles, and indoor navigation. In simple terms, SLAM allows a device to build a map of its surroundings while pinpointing its own location in real time. But the strategic value of SLAM between 2024 and 2030 goes far beyond basic navigation. The market is being pulled forward by two powerful forces: autonomy and spatial intelligence. Autonomous drones, mobile robots, and next-gen delivery bots can’t function without precision indoor and outdoor positioning. At the same time, consumer and enterprise AR platforms—from smart glasses to industrial headsets—are demanding SLAM as a baseline for spatial awareness. As more industries chase real-time perception, SLAM is quietly becoming a default requirement, not just a high-end feature. The maturing sensor ecosystem is another key driver. The cost of LiDAR, RGB-D cameras, and inertial measurement units (IMUs) has dropped fast, making advanced SLAM systems viable for mid-range products. Developers now have access to open-source SLAM stacks, 3D SLAM frameworks, and edge AI modules that can run in real time on mobile-grade processors. This unlocks a broad spectrum of use cases—from mapping remote warehouses to guiding surgical robots inside operating rooms. Governments and public infrastructure projects are playing their part too. Several smart city initiatives in Asia and Europe now mandate autonomous mapping tools for underground utilities, rail inspection, and emergency response. Defense ministries are integrating SLAM into robotic reconnaissance platforms. Even retail chains are piloting SLAM-powered indoor navigation systems to enhance the in-store experience or manage autonomous restocking carts. From a strategic stakeholder lens, the map is expanding fast. Original equipment manufacturers (OEMs) in robotics and AR are embedding SLAM by default. Cloud providers are exploring SLAM as part of edge computing stacks. Logistics companies want SLAM-enabled bots to reduce last-mile costs. And venture capital continues to pour into SLAM-focused startups—especially those offering low-power, edge-deployable, or AI-optimized solutions. SLAM is no longer a niche tool for researchers. It’s moving to the heart of spatial computing infrastructure. And as devices become more mobile, intelligent, and collaborative, the demand for reliable, real-time localization and mapping will only intensify. Market Segmentation And Forecast Scope The Simultaneous Localization and Mapping (SLAM) market is structured around a few strategic dimensions that reflect how developers and enterprises integrate real-time positioning into products and workflows. As of 2024, most deployments follow a clear segmentation based on technology type, platform, application, and geography. By Type SLAM solutions are typically categorized into two primary types: Visual SLAM ( vSLAM ) and LiDAR-based SLAM . Visual SLAM dominates due to its use in lightweight, camera-based devices like AR/VR headsets, drones, and mobile robots. These systems rely on optical sensors—usually monocular, stereo, or RGB-D cameras—combined with vision-based algorithms to construct spatial maps. LiDAR-based SLAM, while more expensive, is gaining traction in autonomous driving and large-scale robotics. It offers higher accuracy and depth perception in environments with poor lighting or dynamic movement. In 2024, visual SLAM holds an estimated 61% share of the global market, but LiDAR-based systems are closing in, especially as costs fall and sensor miniaturization improves. By Platform SLAM can be deployed on several platforms: robotics , drones , augmented/virtual reality devices , and automated vehicles . Robotics leads the way, especially in warehousing, inspection, agriculture, and healthcare. Autonomous mobile robots (AMRs) now rely on SLAM for precision indoor movement without GPS. Drones—especially those used for industrial inspection, security, and surveying—leverage SLAM to avoid GPS dead zones. Meanwhile, the rise of AR/VR in retail, training, and enterprise workflows is creating a new use case: indoor spatial mapping through wearable SLAM engines. Automotive platforms are a longer-term growth bet, with SLAM being used in driver-assist systems and prototype self-driving stacks. One platform to watch is the wearable segment. With Apple, Meta, and other players investing in spatial computing, SLAM is being embedded into smart glasses and headsets at the silicon level. By Application SLAM isn’t tied to any single sector. Instead, it crosses into logistics and warehouse automation , AR/VR spatial computing , autonomous navigation , construction mapping , and healthcare robotics . Among these, logistics applications are showing the fastest growth in 2024, driven by a surge in demand for AMRs that can operate in dynamic warehouse environments. AR/VR mapping is not far behind. From indoor navigation in airports and malls to industrial training simulations, SLAM is enabling immersive experiences rooted in real-world geometry. Medical robotics and surgical navigation also benefit from SLAM, particularly in confined or GPS-denied spaces like operating rooms or rehabilitation clinics. By Region Geographically, SLAM adoption is led by North America , followed by Europe , Asia Pacific , and LAMEA . North America benefits from a concentration of robotics companies, deep-pocketed AR/VR developers, and a strong venture ecosystem. Europe leads in automotive R&D and infrastructure inspection robotics. Asia Pacific is scaling fast, with aggressive investments in smart factories, mobile robotics, and indoor drone deployments. The Middle East and parts of Latin America are newer entrants, but public infrastructure upgrades are beginning to include SLAM-enabled devices, especially in transportation and public safety. Scope Note While SLAM deployment may look technical, it’s becoming commercial too. Vendors now offer SDKs and SLAM-as-a-Service platforms, allowing companies to integrate localization without building the full pipeline from scratch. As edge computing becomes more accessible, more SLAM applications are shifting from lab prototypes to field deployments. Market Trends And Innovation Landscape The SLAM market is in the middle of a transition—from academic innovation to real-world scale. Over the next several years, the focus will be less on proving that SLAM works and more on making it work faster, cheaper, and across more device types. This shift is fueling a wave of product innovation and competitive experimentation. One of the most noticeable trends in 2024 is the rise of AI-enhanced SLAM , particularly in visual systems. Deep learning is now being used to replace or augment traditional geometric algorithms in areas like feature extraction, scene recognition, and loop closure detection. The result: SLAM engines that perform better in dynamic or cluttered environments—like crowded hospitals or construction sites—where classical methods tend to break down. For instance, AI-assisted SLAM modules can now adapt in real time to changing lighting, moving objects, or partial occlusions. This opens the door for more flexible deployments in industries that operate in messy, unstructured environments. Another innovation frontier is multi-sensor fusion . Rather than relying on a single sensor type, modern SLAM systems integrate data from cameras, LiDAR, IMUs, radar, and even ultrasonic sensors. This fusion boosts reliability, especially in GPS-denied zones such as underground tunnels, disaster sites, or dense urban canyons. The ability to combine different sensor perspectives also reduces localization drift—a critical factor for long-range autonomy. Developers are also pushing SLAM onto edge processors , making it feasible to run full localization pipelines on low-power chips in real time. This is a game-changer for drones, wearables, and mobile robots that can’t afford bulky computing rigs or cloud dependency. Edge SLAM enables fully offline operation—something that's becoming increasingly important for privacy-sensitive and mission-critical use cases. One clear example: warehouse robotics firms are now deploying low-latency, edge-optimized SLAM systems that allow fleets of AMRs to operate 24/7 without Wi-Fi connectivity or central control. Beyond software, there's movement in SLAM hardware integration . Chipmakers are working on dedicated SLAM accelerators that combine image processing, motion estimation, and map building into compact SoCs. This trend mirrors what happened in AI chips five years ago—hardware specialization is driving new product classes and developer tools. Partnerships are another theme worth noting. Leading AR and robotics companies are increasingly sourcing their SLAM engines from third-party specialists. In some cases, these vendors provide SDKs, APIs, and even full development environments that enable rapid prototyping. This ecosystem-driven model is reducing the barrier to entry and accelerating time-to-market across industries. On the academic and research side, innovation hasn’t slowed. Labs continue to publish breakthroughs in semantic SLAM, dynamic object tracking, and long-term map maintenance. While not all of these are commercially ready, they shape the roadmap for enterprise deployments over the next 3–5 years. Finally, there’s a push toward standardization . As SLAM becomes mission-critical in more industries, developers and regulators are starting to ask for interoperability and safety benchmarks. This may eventually lead to certifications for SLAM engines in regulated sectors like automotive or healthcare. The net effect of these trends is clear: SLAM is evolving into a modular, scalable, and AI-augmented capability that can be embedded into almost any spatially aware device. Competitive Intelligence And Benchmarking The SLAM market is unusually fragmented—with a mix of deep-tech startups, academic spinouts, sensor manufacturers, chip vendors, and robotics OEMs all staking their claim. What unites them is a race to deliver high-accuracy localization in smaller, cheaper, and faster formats. Among the most visible players in 2024 is SLAMcore , a UK-based startup focused on real-time visual SLAM software. Their approach centers on providing SDKs that work across robotics, AR/VR, and industrial systems. What gives them an edge is their optimization for low-power compute platforms—making them a go-to choice for battery-operated robotics and wearables. Another standout is NavVis , which has carved out a strong position in mobile indoor mapping and construction. Their flagship mobile mapping systems combine LiDAR with photogrammetry to create high-fidelity digital twins. Unlike some SLAM providers that focus solely on robotics, NavVis targets the built environment—from commercial real estate to infrastructure maintenance. Clearpath Robotics and its industrial brand OTTO Motors are not pure-play SLAM companies, but they’ve developed proprietary SLAM stacks for warehouse AMRs. Their competitive edge lies in combining SLAM with intelligent fleet orchestration. The ability to scale localization across dozens of robots in dynamic, cluttered environments gives them an operational lead in logistics automation. On the sensor side, Velodyne Lidar and Ouster play a different but equally important role. They’re not SLAM software vendors, but their LiDAR hardware forms the backbone of many LiDAR-SLAM systems. These companies have been focusing on reducing the size and cost of 3D sensors while increasing range and reliability—critical for mobile mapping and autonomous navigation applications. From the AR side, Niantic (of Pokémon Go fame) has surprisingly become a major player. Their Lightship platform includes a SLAM engine used by developers to create location-based AR apps. Niantic’s strength lies in its global mapping infrastructure and developer tools that allow AR content to anchor precisely in real-world spaces. It’s worth noting that some of the biggest SLAM advancements aren’t coming from market leaders but from quietly innovative firms building very specific use cases—like surgical robotics, drone inspection, or smart retail. These niche players often outperform larger competitors in accuracy, latency, or integration flexibility. Benchmarking across these vendors shows a few patterns. Companies that control both hardware and SLAM software—such as those making drones or mobile robots—tend to optimize for performance and reliability. Meanwhile, pure-play software vendors compete on SDK simplicity, modularity, and compatibility with off-the-shelf hardware. Pricing strategies vary widely. Some vendors offer open-source SLAM libraries supported by paid enterprise features. Others run a licensing model based on seats or devices deployed. Subscription-based APIs are becoming more common, especially for cloud-connected SLAM workflows used in AR and smart retail. Regionally, North America leads in terms of the number of SLAM startups and funding activity, but Europe and Asia are catching up quickly—particularly in applications like factory automation and smart infrastructure mapping. Competitive pressure is mounting fast. As SLAM moves from R&D to revenue, only the players who can balance precision, performance, and productization will maintain leadership over the next three years. Regional Landscape And Adoption Outlook SLAM adoption is unfolding differently across the globe, shaped by infrastructure maturity, industrial focus, and government investment. While North America leads in overall market value, regional momentum is building fast in Asia Pacific and parts of Europe. North America continues to set the pace for SLAM innovation, particularly in the United States. A large number of robotics startups and AR/VR pioneers are headquartered here, including many that originated from top-tier research institutions. What makes the U.S. unique is its dual-track investment—one side focused on consumer experiences like AR gaming and wearable navigation, the other rooted in enterprise robotics, logistics automation, and public safety. Government programs, especially around defense robotics and infrastructure inspection, are also channeling funds toward real-time localization technologies. Canada is following suit, especially in the areas of academic research and drone navigation. Universities and labs in Ontario and British Columbia have produced some of the most cited research in SLAM over the past decade, and spinouts are beginning to turn that work into commercial tools for drones, mining automation, and indoor asset tracking. Europe has emerged as the hub for precision SLAM in industrial and automotive environments. Germany, in particular, is a key market—home to automotive suppliers integrating SLAM into autonomous vehicle stacks, as well as robotics companies targeting advanced manufacturing. The EU’s strict safety and interoperability standards are also pushing vendors toward more robust and certifiable SLAM implementations. France and the Netherlands are seeing rapid adoption in construction and surveying, where mobile mapping tools powered by SLAM are reducing time and cost for infrastructure assessments. The region is also embracing digital twin technologies, where SLAM helps build spatially accurate indoor maps for facility management and asset tracking. Asia Pacific is arguably the fastest-growing region in SLAM, especially in terms of unit deployment. China is investing heavily in smart logistics and industrial automation—two areas where SLAM is essential. Major e-commerce and robotics companies are building internal SLAM capabilities to power warehouse bots, last-mile delivery units, and autonomous forklifts. Local governments are also funding SLAM applications in underground transit inspection and emergency response. Japan and South Korea are ahead in integrating SLAM into consumer tech, particularly AR smart glasses and indoor service robots. Their strength lies in hardware-software integration and high-precision engineering—two factors that are essential for reliable SLAM performance in dynamic, real-world settings. India is an emerging player, especially in drone-based surveying and agri -robotics. With wide-ranging geography and variable infrastructure, SLAM-enabled systems offer a more scalable solution than GPS-based tools in many rural or semi-urban environments. LAMEA (Latin America, Middle East, and Africa) is still in the early stages of adoption, but there are signs of acceleration. In the Middle East, particularly the UAE and Saudi Arabia, SLAM is being used in urban development projects, autonomous security systems, and smart retail. The region’s focus on futuristic city infrastructure offers a clear runway for SLAM to be embedded into transportation, surveillance, and public services. Latin America is exploring SLAM in construction tech and drone mapping for agriculture, especially in countries like Brazil and Chile. Africa remains nascent, but a few pilot projects in mobile health robotics and mining automation suggest future potential as costs continue to fall. The regional pattern is clear: where infrastructure is modernizing and labor costs are high, SLAM adoption accelerates. Where safety, efficiency, or spatial awareness is becoming non-negotiable, governments and enterprises are moving from experiments to scaled deployments. End-User Dynamics And Use Case SLAM technology is reshaping how various industries think about automation, navigation, and spatial awareness. From logistics to healthcare, the end-user base is diversifying rapidly—each sector bringing its own demands for precision, reliability, and integration flexibility. In logistics and warehousing, SLAM is quickly becoming a baseline requirement. Autonomous Mobile Robots (AMRs) used for shelf stocking, order picking, and transport rely on real-time localization to operate safely in dynamic environments. Traditional GPS doesn’t work indoors, so SLAM fills that critical gap. Facilities that once relied on magnetic strips or static beacons are now shifting to vision or LiDAR-based SLAM systems, enabling more agile fleet deployments. One U.S.-based distribution center recently replaced its barcode-based navigation system with a vision-SLAM stack across 80 AMRs. The result was a 30% gain in route efficiency and reduced downtime during layout changes—since the system could re-map the warehouse autonomously without manual intervention. In the construction and real estate sector, SLAM is being used to create digital twins of job sites and existing buildings. Contractors and architects can now walk through a space with a handheld or wearable SLAM device and generate centimeter -accurate 3D maps. This shortens surveying time, improves renovation planning, and reduces project delays caused by undocumented site variations. Healthcare has also begun exploring SLAM—particularly in surgical robotics and hospital automation. In settings like operating rooms or intensive care units, where space is limited and precision is non-negotiable, SLAM enables robots to navigate without relying on external markers or pre-installed infrastructure. Cleaning robots and autonomous delivery carts are another growing use case in large hospitals and medical campuses. In retail and smart buildings , SLAM is powering indoor navigation for both customers and service robots. Shopping malls, airports, and large commercial complexes are deploying SLAM-based AR apps that help users find stores, amenities, or specific products via visual guidance. On the back end, SLAM-equipped robots are being tested for inventory scanning and shelf monitoring—reducing labor requirements and improving real-time stock visibility. Defense and public safety agencies are using SLAM for reconnaissance robots, search-and-rescue drones, and underground inspection. These environments often lack GPS or have unstable terrain—making SLAM essential for mission continuity. SLAM also allows these systems to build up-to-date maps of hazardous zones, which can be shared in real time with human operators or command centers . Across all these segments, a common thread is flexibility. End users aren’t just buying SLAM as a standalone product. They’re demanding SDKs, APIs, or pre-integrated modules that can slot into their existing systems without extensive customization. Usability, latency, and maintenance are now as important as localization accuracy. It’s also clear that the learning curve is flattening. Thanks to more intuitive interfaces and better developer tools, enterprises with no background in robotics or mapping can now deploy SLAM within weeks—not months. Whether it’s guiding a drone through a collapsed building, or helping a shopper find a product in a multi-level mall, SLAM’s end-user landscape is expanding fast. The next phase will be less about proving technical feasibility and more about delivering consistent, enterprise-grade performance at scale. Recent Developments + Opportunities & Restraints Recent Developments (Last 2 Years) SLAMcore partnered with NVIDIA to optimize its visual SLAM SDK for Jetson Orin edge devices. This integration allows real-time SLAM computation with reduced latency and lower power draw—ideal for AMRs and wearable AR platforms. NavVis released VLX 3 , a wearable mobile mapping system targeting construction and industrial facilities. The system combines LiDAR, cameras, and IMUs to generate high-accuracy point clouds for indoor mapping. Intel divested its RealSense division , creating an opportunity for independent SLAM developers to innovate beyond Intel’s proprietary visual computing stacks. Several startups have since launched camera-agnostic SLAM toolkits. Lidar company Ouster merged with Velodyne , consolidating the LiDAR hardware landscape and influencing the future roadmap for LiDAR-SLAM integration. Niantic expanded Lightship VPS to indoor venues, allowing SLAM-based AR localization in shopping malls and museums using a standard smartphone camera. Opportunities Edge-based SLAM for wearables and mobile robots : As compute performance improves at the edge, companies can now embed SLAM into lightweight form factors without relying on cloud or GPU-heavy infrastructure. Construction automation and indoor mapping : Demand is rising for handheld or drone-based SLAM systems that can generate building-scale 3D models for planning, inspection, and digital twin applications. Emerging market growth for GPS-denied navigation : Countries with poor GNSS coverage are fast-tracking SLAM-based localization in agriculture, logistics, and security—unlocking new commercial deployment zones. Restraints High integration complexity for multi-sensor systems : Combining LiDAR, visual, and IMU inputs often requires specialized calibration, raising both cost and development time. Lack of global standards or safety certifications : For mission-critical uses like autonomous vehicles or surgical robots, the absence of regulatory benchmarks limits large-scale adoption. 7.1. Report Coverage Table Report Attribute Details Forecast Period 2024 – 2030 Market Size Value in 2024 USD 3.1 Billion Revenue Forecast in 2030 USD 7.9 Billion Overall Growth Rate CAGR of 17.2% (2024 – 2030) Base Year for Estimation 2024 Historical Data 2019 – 2023 Unit USD Million, CAGR (2024 – 2030) Segmentation By Type, By Platform, By Application, By Geography By Type Visual SLAM, LiDAR-based SLAM By Platform Robotics, Drones, AR/VR Devices, Autonomous Vehicles By Application Logistics & Warehouse Automation, AR/VR Mapping, Construction, Healthcare, Others By Region North America, Europe, Asia-Pacific, Latin America, Middle East & Africa Country Scope U.S., Canada, Germany, UK, France, China, Japan, India, South Korea, Brazil, UAE Market Drivers • Rising demand for autonomous robotics and drones • Expansion of AR/VR spatial computing in enterprise • Availability of compact, low-cost sensors Customization Option Available upon request Frequently Asked Question About This Report Q1: How big is the simultaneous localization and mapping market? A1: The global simultaneous localization and mapping (SLAM) market was valued at USD 3.1 billion in 2024. Q2: What is the CAGR for the forecast period? A2: The SLAM market is expected to grow at a CAGR of 17.2% from 2024 to 2030. Q3: Who are the major players in this market? A3: Leading players include SLAMcore, NavVis, Clearpath Robotics, Velodyne Lidar, and Niantic. Q4: Which region dominates the market share? A4: North America leads the SLAM market due to its strong robotics and AR ecosystem and sustained R&D funding. Q5: What factors are driving this market? A5: Growth is fueled by rising demand for real-time spatial intelligence, edge-based robotics, and enterprise-grade AR/VR solutions. Executive Summary • Market Overview • Market Attractiveness by Type, Platform, Application, and Region • Strategic Insights from Industry Executives (CXO Perspective) • Historical Market Size and Future Projections (2019–2030) • Summary of Market Segmentation by Type, Platform, Application, and Region Market Share Analysis • Leading Players by Revenue and Market Share • Market Share Analysis by Type • Market Share Analysis by Platform • Market Share Analysis by Application Investment Opportunities in the SLAM Market • Key Developments and Innovations • Mergers, Acquisitions, and Strategic Partnerships • High-Growth Segments for Investment Market Introduction • Definition and Scope of the Study • Market Structure and Key Findings • Overview of Top Investment Pockets Research Methodology • Research Process Overview • Primary and Secondary Research Approaches • Market Size Estimation and Forecasting Techniques Market Dynamics • Key Market Drivers • Challenges and Restraints Impacting Growth • Emerging Opportunities for Stakeholders • Impact of Regulatory and Technology Shifts • Advancements in Sensor Fusion and Spatial AI Global SLAM Market Analysis • Historical Market Size and Volume (2019–2023) • Market Size and Volume Forecasts (2024–2030) Market Analysis by Type • Visual SLAM • LiDAR-based SLAM Market Analysis by Platform • Robotics • Drones • AR/VR Devices • Autonomous Vehicles Market Analysis by Application • Logistics and Warehouse Automation • AR/VR Mapping • Construction and Site Modelling • Healthcare and Surgical Robotics • Other Industrial and Commercial Use Cases Market Analysis by Region • North America • Europe • Asia Pacific • Latin America • Middle East and Africa Regional Market Analysis North America SLAM Market Analysis • Historical Market Size and Volume (2019–2023) • Market Size and Volume Forecasts (2024–2030) Market Analysis by Type • Visual SLAM • LiDAR-based SLAM Market Analysis by Platform • Robotics • Drones • AR/VR Devices • Autonomous Vehicles Market Analysis by Application • Logistics Automation • AR/VR Spatial Mapping • Construction and Surveying • Healthcare Robotics • Other Applications Country-Level Breakdown • United States • Canada • Mexico Europe SLAM Market Analysis • Historical Market Size and Volume (2019–2023) • Market Size and Volume Forecasts (2024–2030) Market Analysis by Type • Visual SLAM • LiDAR-based SLAM Market Analysis by Platform • Robotics • Drones • AR/VR Devices • Autonomous Vehicles Market Analysis by Application • Logistics Automation • AR/VR Mapping • Construction and Surveying • Healthcare Robotics • Other Applications Country-Level Breakdown • Germany • United Kingdom • France • Italy • Spain • Rest of Europe Asia Pacific SLAM Market Analysis • Historical Market Size and Volume (2019–2023) • Market Size and Volume Forecasts (2024–2030) Market Analysis by Type • Visual SLAM • LiDAR-based SLAM Market Analysis by Platform • Robotics • Drones • AR/VR Devices • Autonomous Vehicles Market Analysis by Application • Logistics and Warehouse Automation • AR/VR Mapping • Construction and Infrastructure Modelling • Healthcare Robotics • Other Applications Country-Level Breakdown • China • India • Japan • South Korea • Rest of Asia Pacific Latin America SLAM Market Analysis • Historical Market Size and Volume (2019–2023) • Market Size and Volume Forecasts (2024–2030) Market Analysis by Type • Visual SLAM • LiDAR-based SLAM Market Analysis by Platform • Robotics • Drones • AR/VR Devices • Autonomous Vehicles Market Analysis by Application • Logistics Automation • AR/VR Mapping • Construction and Surveying • Healthcare Robotics • Other Applications Country-Level Breakdown • Brazil • Mexico • Argentina • Rest of Latin America Middle East and Africa SLAM Market Analysis • Historical Market Size and Volume (2019–2023) • Market Size and Volume Forecasts (2024–2030) Market Analysis by Type • Visual SLAM • LiDAR-based SLAM Market Analysis by Platform • Robotics • Drones • AR/VR Devices • Autonomous Vehicles Market Analysis by Application • Logistics and Warehouse Automation • AR/VR Mapping • Construction and Infrastructure Applications • Healthcare Robotics • Other Applications Country-Level Breakdown • UAE • Saudi Arabia • South Africa • Rest of MEA Key Players and Competitive Analysis • SLAMcore • NavVis • Clearpath Robotics / OTTO Motors • Ouster • Velodyne • Niantic • Leading Robotics OEMs • Emerging Startups in Edge SLAM and Sensor Fusion Appendix • Abbreviations and Terminologies Used • References and Sources List of Tables • Market Size by Type, Platform, Application, and Region (2024–2030) • Regional Market Breakdown by Type and Platform (2024–2030) List of Figures • Market Dynamics: Drivers, Restraints, Opportunities • Regional Market Snapshot • Competitive Landscape and Market Share Analysis • Growth Strategies Adopted by Key Players • Market Share by Type and Platform (2024 vs. 2030)