Report Description Table of Contents Introduction And Strategic Context The Global Brain Cancer Diagnostics Market is projected to grow steadily, valued at USD 2.7 billion in 2024 and expected to reach USD 4.33 billion by 2030, expanding at a CAGR of 8.2 % during the forecast period, according to Strategic Market Research. Brain cancer remains one of the most complex and high-stakes oncology segments, both medically and technologically. The diagnostics side of this market is undergoing a shift — from reliance on structural imaging to a more integrated ecosystem that blends genomic, molecular, and functional diagnostics. This evolution is being driven by two converging forces: rising disease burden and diagnostic technology innovation. To put it simply — earlier detection is finally catching up with the pace of therapeutic innovation. As targeted therapies and immuno-oncology evolve, the demand for precise, actionable diagnostics is growing. Traditional MRI and CT imaging are now being augmented — not replaced — by biomarker-based assays, liquid biopsy platforms, and AI-driven radiogenomics. The market is particularly shaped by four macro forces: Rising incidence of glioblastoma multiforme (GBM) and other aggressive CNS tumors Increased use of AI tools for brain lesion segmentation and malignancy scoring Growing adoption of non-invasive diagnostics like cfDNA -based blood tests Stronger public-private funding for neuro-oncology R&D The stakeholder mix is diverse. OEMs are doubling down on AI-enabled MRI platforms. Diagnostic labs are pushing next-gen tissue profiling. Startups are scaling early detection tests based on epigenetic signatures. And health systems are investing in cross-functional neuro-oncology units to combine imaging, pathology, and genomics under one roof. From a regulatory angle, recent FDA fast-track approvals for brain tumor tests — especially liquid biopsy platforms — signal a shift toward more agile diagnostic validation pathways. This isn’t just about better scans or faster results anymore. The diagnostics industry is starting to treat brain cancer not as a single disease, but as a highly heterogeneous landscape — one that requires layered, dynamic diagnostic strategies across time. In short, the market for brain cancer diagnostics is no longer niche — it’s quietly becoming central to how precision oncology is delivered, funded, and scaled across regions. Market Segmentation And Forecast Scope The brain cancer diagnostics market breaks down along several strategic axes — each reflecting how clinicians, hospitals, and diagnostic companies approach early detection, staging, and therapy planning for central nervous system (CNS) malignancies. Here’s how the market typically segments: By Diagnostic Modality This is the core segmentation, reflecting how different technologies are deployed depending on clinical need, tumor type, and setting. Imaging (MRI, CT, PET, fMRI, MRS): Still the backbone of initial diagnosis and surgical planning. MRI with contrast remains the gold standard for brain tumor localization. Functional MRI (fMRI) and MR spectroscopy (MRS) are gaining traction for high-resolution mapping of tumor boundaries and activity. Molecular and Genetic Testing (Biopsy-based): These tests identify mutations like IDH1/2, 1p/19q co-deletions, and MGMT promoter methylation. They’re essential for therapy decisions, especially with gliomas and astrocytomas. Liquid Biopsy ( cfDNA , ctDNA , microRNA panels): An emerging category, especially in recurrent tumor monitoring. Liquid biopsy can offer insights into tumor progression with a simple blood draw — potentially replacing some tissue biopsies in high-risk cases. Immunohistochemistry (IHC) and In Situ Hybridization (ISH): Widely used in pathology labs for phenotyping and grading tumors. IHC remains a workhorse for differentiating glioblastomas from low-grade gliomas. AI-Powered Diagnostics and Radiomics: AI-based tools are now being embedded into imaging platforms to segment lesions, assess malignancy risk, and correlate radiographic features with molecular subtypes. While still a smaller revenue contributor, this segment is growing fast. Imaging holds the largest share (~43% in 2024), but liquid biopsy is the fastest-growing segment — expected to post double-digit CAGR through 2030. By Cancer Type The diagnostic needs vary dramatically by tumor type, which impacts which technologies are adopted. Glioblastoma Multiforme (GBM) Astrocytoma Oligodendroglioma Meningioma Pituitary Tumors Medulloblastoma (in pediatric patients) GBM is by far the dominant application area — accounting for more than 50% of diagnostic volumes due to its aggressive nature and poor prognosis. By End User This segmentation shows where diagnostic tools are most likely to be adopted. Hospitals and Neuro-Oncology Centers: These represent the largest share — especially academic medical centers with integrated imaging-pathology-genomics labs. Diagnostic Imaging Centers: High MRI and PET scan throughput, but limited access to tissue or molecular tools. Often used for referral or follow-up scanning. Specialty Diagnostic Labs: These run high-complexity tests like NGS panels and methylation arrays. Often partner with hospitals for tissue analysis. Research Institutes and CROs: Small but strategic — these facilities drive early-stage biomarker discovery and preclinical diagnostics validation. By Region North America leads due to deep infrastructure and early adoption of liquid biopsy and AI. Europe benefits from strong public healthcare coverage and academic collaborations. Asia Pacific is growing fast, with China and India investing in diagnostic infrastructure. LAMEA remains under-penetrated, though Brazil and UAE are emerging markets. Scope Note: This market is no longer limited to anatomical imaging. The diagnostic landscape is expanding to include molecular fingerprints, digital pathology, and real-time monitoring platforms — which means vendors now compete across imaging, laboratory medicine, and digital AI ecosystems. Market Trends And Innovation Landscape The brain cancer diagnostics market is moving faster than ever — not because of a single breakthrough, but because so many diagnostic layers are evolving at once. From AI-assisted imaging to blood-based tumor profiling, this space is defined by convergence. Let’s break down the key trends shaping the next wave of innovation. AI and Radiogenomics Are Merging Diagnostic Silos AI is no longer just detecting abnormalities on brain MRIs — it’s starting to correlate image features with molecular subtypes of tumors. This shift toward radiogenomics means clinicians can infer key mutations (like IDH1 or EGFR amplifications) without needing a biopsy, especially when tumor location or patient condition makes surgery risky. A few AI platforms now offer integrated dashboards that analyze voxel-level MRI data, predict tumor grade, and flag atypical growth patterns. Some can even estimate progression timelines based on historical data sets. One neuro-oncologist we spoke to said: “For inoperable gliomas, radiogenomics is giving us a new language to describe tumor biology without a scalpel.” Liquid Biopsy Is Quietly Redefining Monitoring Protocols Until recently, tracking brain tumors meant repeat imaging or surgical re-biopsy. But newer cfDNA and ctDNA assays are making it possible to detect brain tumor biomarkers in blood — even through the blood-brain barrier, using highly sensitive digital PCR or NGS. This is especially valuable for: Monitoring recurrence after resection Assessing treatment response mid-cycle Stratifying patients for clinical trials Startups are also exploring cerebrospinal fluid (CSF) –based diagnostics for ultra-early detection, particularly in high-risk populations (e.g., pediatric medulloblastoma survivors or patients with Li-Fraumeni syndrome). To be honest, these aren’t widespread yet — but adoption is picking up at cancer centers with precision oncology programs. Next-Gen MRI and Spectroscopy Are Enhancing Functional Insight MRI is evolving beyond structure. Newer functional MRI (fMRI) and MR spectroscopy (MRS) tools now measure brain metabolism, vascularity, and oxygenation — offering deeper insight into tumor activity, not just location. For instance: Hyperpolarized MRI can detect early metabolic changes in gliomas Perfusion-weighted imaging (PWI) helps differentiate tumor recurrence from radiation necrosis DTI (Diffusion Tensor Imaging) is now part of pre-surgical planning for tumor removal near critical white matter tracts These advances are especially important for pediatric cases or patients with tumors in eloquent brain areas, where precision matters more than speed. Digital Pathology and Molecular Panels Are Getting Smarter Tissue-based diagnostics are also undergoing a renaissance. Modern neuropathology now includes: Methylation profiling NGS-based tumor panels MGMT methylation and IDH status screening Some labs are automating the entire pipeline — from slide scanning to IHC scoring — using deep learning. Others are layering in AI tools to reclassify ambiguous gliomas, based on updated WHO guidelines. Molecular reclassification isn’t just academic anymore — it directly affects patient survival and treatment options. Cross-Sector Partnerships Are Fueling Innovation Imaging vendors are teaming up with AI startups to co-develop FDA-cleared brain lesion detection software. Biotech firms are collaborating with cancer centers to validate liquid biopsy signatures using patient-matched datasets. Government and nonprofit funding is flowing into open-access brain tumor registries, which are feeding machine learning models and helping democratize diagnostics globally. The bigger trend? Brain cancer diagnostics are finally breaking out of their silos. Imaging, molecular analysis, and AI aren’t competing — they’re converging into unified diagnostic strategies that can be layered across the care pathway, from first suspicion to long-term monitoring. This could be the moment when diagnostics stop just reacting to brain cancer — and start predicting it. Competitive Intelligence And Benchmarking The brain cancer diagnostics market isn’t dominated by just one kind of player. It’s shaped by a mix of imaging OEMs, molecular diagnostics companies, AI startups, and academic labs that punch above their weight. What sets leaders apart? It’s not just tech sophistication — it’s how well they adapt to clinical reality. Let’s break down how key companies are positioning themselves in this fast-evolving space. GE HealthCare GE continues to lead in neuroimaging platforms, especially for brain cancer staging and surgical planning. Its 3T MRI systems, bundled with advanced fMRI and diffusion protocols, are widely used in tertiary cancer centers. They’ve also started integrating AI-based lesion segmentation tools from third-party vendors into their ecosystem. What makes GE stand out is their push toward a “complete suite” approach — combining hardware, AI overlays, and even guided biopsy assistance in one platform. In markets like North America and Germany, this is becoming the default in neurosurgical units. Siemens Healthineers Siemens is taking a dual-pronged strategy: high-end imaging plus molecular diagnostics. Their Biograph mCT PET/CT systems are often the first choice in cancer centers looking to correlate structural and metabolic data. And their Atellica platform is used by labs running molecular and IHC panels. They’ve also invested heavily in AI-powered clinical decision support (CDS) tools for neuro-oncology. The company’s alignment with academic research sites allows them to co-develop custom protocols for glioma grading and functional mapping. For Siemens, depth matters more than breadth — they’re betting on clinical specificity over generalist tools. Roche Diagnostics Roche plays on the molecular side — dominating with its tissue-based testing portfolio. Their Ventana IHC systems are used for MGMT and IDH1 testing, while the cobas platform is increasingly applied to cfDNA analysis in clinical studies. What gives Roche an edge is their integration with pharma pipelines. As brain cancer therapies become more targeted, Roche’s diagnostic kits are frequently part of the companion diagnostics approval path. This positions them as a gatekeeper between diagnostics and drug delivery. Guardant Health A rising player in liquid biopsy, Guardant is pushing into the brain cancer space with cfDNA assays tailored for CNS malignancies. While their roots are in lung and colorectal cancer, they’re now running early-access programs for glioma recurrence monitoring. What sets Guardant apart is its ultra-high sensitivity sequencing and cloud-based reporting tools, which allow oncologists to monitor tumor evolution over time — even without new scans or biopsies. The liquid biopsy space is still emerging for brain cancer, but Guardant is one of the few players treating it as a long-term bet. PathAI This AI startup is gaining traction for its digital pathology algorithms, especially in CNS tumor classification. They’ve built deep learning models that can: Automate tumor grade prediction Flag histologic variants Correlate tissue features with genetic mutations PathAI works with hospitals to layer this tech onto existing microscope-based workflows, making AI more accessible without overhauling infrastructure. To be honest, they’re not a diagnostic device maker — but they’re influencing how fast and how accurately pathologists can interpret brain tumor biopsies. Tempus Tempus brings a data-first approach to the market. Known for their clinical-genomic databases and oncology reports, they now offer a brain tumor -focused NGS panel with integrated clinical annotations. What makes them different? They combine patient imaging, molecular data, and EHR outcomes to create predictive care models. Hospitals are increasingly using Tempus not just for diagnostics — but for strategic planning around clinical trials and experimental therapies. Competitive Themes and Differentiators AI is no longer a bonus — it’s a baseline. Companies not integrating radiomics or digital pathology are falling behind. Liquid biopsy innovators are still in proof-of-concept mode, but gaining attention from investors and cancer networks. Multi-modal integration (imaging + molecular + AI) is the new frontier, and very few companies can do it well. Pricing isn’t the main battleground — clinical trust and validation partnerships are. In reality, this isn’t a “winner takes all” market. The most successful players are the ones that play well together — integrating seamlessly into hospital systems, regulatory frameworks, and evolving neuro-oncology protocols. Regional Landscape And Adoption Outlook The adoption of brain cancer diagnostics doesn’t unfold uniformly across the globe. It’s shaped by infrastructure, reimbursement models, talent availability, and — most crucially — how different healthcare systems approach central nervous system (CNS) diseases. Here’s a closer look at how the market plays out by region. North America North America remains the most advanced market for brain cancer diagnostics — not just in terms of technology, but also clinical workflows. The U.S. and Canada lead in adoption of: AI-assisted MRI for tumor grading Liquid biopsy pilots for glioblastoma recurrence NGS panels integrated into oncology EMRs Academic medical centers like MD Anderson, UCSF, and Toronto’s Princess Margaret Cancer Centre are setting the pace. Many now operate dedicated neuro-oncology labs, equipped with PET-MRI hybrids, intraoperative MRI, and tissue profiling suites. These centers are also where vendors test new imaging software and AI algorithms before commercialization. Insurance coverage is generous for imaging and biopsy in suspected brain tumor cases, which accelerates diagnostics adoption — especially in the U.S. Medicaid and Medicare also reimburse for genetic testing in glioma, provided it's tied to FDA-approved therapy decisions. However, suburban and rural centers still face barriers to adopting AI tools and liquid biopsy workflows — due to both cost and clinician training gaps. Europe Europe’s brain cancer diagnostics landscape is built on public health frameworks, which allow for consistent access but slightly slower innovation uptake compared to the U.S. Germany, France, and the UK lead in: Digital pathology adoption AI-enabled MR spectroscopy in glioma cases Standardized molecular testing under EU CNS tumor guidelines The European Association of Neuro-Oncology (EANO) has helped push for harmonized diagnostic protocols, including MGMT methylation testing and IDH genotyping as part of first-line workups. That said, Eastern Europe continues to lag — many hospitals still rely on conventional MRI and manual histopathology. Some countries lack reimbursement pathways for liquid biopsy or genomic panels. Still, EU funding programs are beginning to close that gap by supporting regional oncology data networks, especially for rare CNS cancers. Asia Pacific Asia Pacific is the fastest-growing region in this market — driven by rising cancer incidence, growing diagnostic awareness, and aggressive hospital expansion across India, China, South Korea, and parts of Southeast Asia. Japan and South Korea are leaders in precision neuro-oncology, especially in integrating fMRI and AI-assisted DTI mapping for surgical planning. India is showing rapid growth in high-end imaging installations in metros, and several large private labs now offer brain tumor NGS panels at affordable rates. China is scaling fast, with government-backed neuro-oncology centers opening in Tier 2 cities and AI imaging startups developing CNS-specific algorithms for the domestic market. One gap? Pathologist shortages — many countries face a lack of trained neuropathologists and radiologists, especially outside urban centers. This is where cloud-based AI tools and teleradiology services are becoming indispensable. Liquid biopsy adoption remains low for now, but pilot programs are underway — especially in Hong Kong, Singapore, and South Korea. Latin America, Middle East, and Africa (LAMEA) This region is highly heterogeneous. Brazil and Mexico are emerging as regional anchors. Their top-tier cancer centers have introduced PET/MRI for brain cancer staging and are participating in international biomarker trials. In the Middle East, countries like UAE and Saudi Arabia are investing heavily in comprehensive cancer centers with diagnostic infrastructure that rivals Western benchmarks. In Africa, access remains limited. Most brain tumor diagnoses rely on basic CT or conventional MRI, and tissue diagnosis is often delayed due to lab constraints. Nonprofits and global health initiatives are working to improve access via mobile MRI clinics, AI imaging tools for low-resource settings, and cross-border sample analysis agreements with European labs. To be honest, the diagnostic gap in LAMEA is still wide — but closing slowly through regional investments and global partnerships. Key Regional Trends at a Glance Region Strengths Gaps North America Precision diagnostics, AI integration Cost barriers in smaller centers Europe Protocol standardization, public funding Limited adoption speed in Eastern EU Asia Pacific High growth, government investment Neuropathologist shortage, rural access LAMEA Growth pockets in Brazil, UAE, S. Africa Infrastructure gaps, low liquid biopsy adoption Bottom line: The brain cancer diagnostics market is shifting from regional innovation silos to a global learning curve — where best practices from the U.S., Europe, and Asia are increasingly shared across borders through cloud platforms, academic networks, and public health collaborations. End-User Dynamics And Use Case The success of brain cancer diagnostics doesn’t just rely on cutting-edge tools — it hinges on how different end users actually implement them. From highly specialized neuro-oncology centers to decentralized diagnostic labs, adoption patterns vary widely depending on clinical focus, budget, and institutional capabilities. Let’s explore the major end-user segments and how they interact with this market. Hospitals and Neuro-Oncology Centers This is the largest and most influential segment, particularly in tertiary care and academic settings. These centers manage complex CNS tumor cases and often maintain full in-house diagnostic infrastructure, including: MRI and PET/MRI scanners Intraoperative MRI suites Advanced neuropathology labs NGS and methylation profiling tools What sets these institutions apart is their use of multi-modal diagnostics, where imaging, histopathology, and genomics are integrated into a unified decision-making workflow. For example, after an MRI flags a suspicious mass, the patient might undergo a stereotactic biopsy, with tissue sent for IDH1 mutation testing and MGMT methylation status. Results are often discussed in multidisciplinary tumor boards, which influence therapy plans and trial eligibility. In short, hospitals are not just end users — they are the operational nerve centers where diagnostics translate into clinical action. Diagnostic Imaging Centers These standalone or networked facilities mainly offer MRI, CT, and PET scanning. While they don’t usually handle molecular testing, they’re crucial for: Initial tumor detection Recurrence monitoring Surgical planning Their edge lies in volume. Some centers handle hundreds of scans weekly, and they’re often early adopters of AI tools for brain lesion segmentation and pre-read reports. However, without access to pathology or genomics, they often refer patients back to hospitals for full diagnostic workups. Their influence is growing as more imaging centers partner with AI startups to deliver smart, annotated reports directly to oncologists. Specialty Diagnostic Laboratories These labs specialize in molecular diagnostics and histopathology — and often handle the most technically complex tests in the workflow. They receive brain tumor tissue samples from hospitals across regions and perform: NGS-based tumor panels Methylation arrays Immunohistochemistry (IHC) panels Some labs have built reputations around specific tumor types like gliomas or medulloblastomas, attracting referrals from smaller hospitals and even international clients. They’re also at the forefront of digital pathology adoption, allowing remote pathologists to read slides through cloud-based platforms. Think of them as the backend powerhouses that drive diagnostic precision at scale. Academic and Research Institutions While smaller in number, these entities are vital drivers of early-stage innovation. Universities and research hospitals often develop or test: New biomarker signatures Experimental AI algorithms Liquid biopsy platforms still in pre-commercial phases They’re key collaborators for vendors looking to validate new tools under real-world conditions. Use Case: Multimodal Diagnosis at a South Korean Hospital A leading tertiary hospital in Seoul recently implemented a full-stack diagnostic workflow for aggressive gliomas. Here’s how it worked: Initial Detection The patient underwent a contrast-enhanced MRI with AI-assisted lesion segmentation. The tool flagged a high-probability grade IV lesion in the left temporal lobe. Biopsy and Molecular Workup A stereotactic biopsy was performed. Tissue was sent for IDH1/2, TP53, and ATRX mutation analysis. MGMT promoter methylation testing was done via qPCR. Digital Pathology Slides were scanned and analyzed using an AI tool trained on WHO 2021 CNS classification standards. Clinical Decision Results were integrated into a multidisciplinary tumor board discussion, which determined eligibility for a temozolomide-based chemoradiation regimen and a targeted therapy trial. What’s notable is the speed: The full diagnostic turnaround — imaging, molecular, and pathology — was completed in just 5 days. Key Insight End users aren’t just consumers — they’re co-creators of diagnostic value. As systems move toward value-based care, hospitals and labs that streamline diagnostics end up shaping the future of this market through real-world feedback and data sharing. Recent Developments + Opportunities & Restraints Recent Developments (Last 2 Years) In April 2023, the FDA granted Breakthrough Device Designation to a blood-based diagnostic test for glioblastoma, developed by a U.S.-based biotech firm focused on CNS liquid biopsy applications. In November 2022, a multi- center study published in Nature Medicine validated the use of AI-enabled MRI segmentation tools for real-time glioma grading, improving diagnostic sensitivity by 27% compared to standard radiology. In early 2024, Siemens Healthineers partnered with a leading academic medical center in Europe to develop a radiogenomic algorithm that predicts IDH mutation status using only MRI features. The tool is now in clinical validation. In Q2 2023, Guardant Health launched a pilot program in select U.S. neuro-oncology centers to test its cfDNA assay for recurrent brain tumors, expanding its portfolio beyond lung and colon cancers. In December 2023, the WHO officially updated its CNS tumor classification system, emphasizing molecular profiling over histologic appearance. This led to immediate reconfiguration of diagnostic workflows at several major pathology labs globally. Opportunities AI-driven radiogenomics is moving from research to routine care: Integrated platforms that link imaging features with molecular profiles are now being trialed in clinical settings, creating new value layers for OEMs, software developers, and care providers. Emerging markets are investing in precision diagnostic infrastructure: Countries like India, Brazil, and Saudi Arabia are upgrading cancer center capabilities — including MRI, molecular labs, and digital pathology — creating first-mover opportunities for vendors offering modular or scalable solutions. Liquid biopsy is gaining clinical interest for post-surgical monitoring: As non-invasive recurrence tracking becomes a priority, especially in glioblastoma cases, there's increasing demand for blood- and CSF-based tests that reduce reliance on repeat imaging. Restraints Diagnostic infrastructure remains unevenly distributed: Many regions — including parts of Latin America, Africa, and Southeast Asia — still lack access to high-end MRI, molecular testing, and trained personnel, limiting market expansion. High cost and limited reimbursement for advanced diagnostics: Molecular profiling, AI platforms, and liquid biopsy tests can be expensive and are not yet consistently covered by public or private insurers, even in developed markets. 7.1. Report Coverage Table Report Attribute Details Forecast Period 2024 – 2030 Market Size Value in 2024 USD 2.7 Billion Revenue Forecast in 2030 USD 4.33 Billion Overall Growth Rate CAGR of 8.2% (2024 – 2030) Base Year for Estimation 2024 Historical Data 2019 – 2023 Unit USD Million, CAGR (2024 – 2030) Segmentation By Diagnostic Modality, By Cancer Type, By End User, By Geography By Diagnostic Modality Imaging (MRI, CT, PET, fMRI, MRS), Molecular and Genetic Testing, Liquid Biopsy, IHC/ISH, AI-powered Diagnostics By Cancer Type Glioblastoma Multiforme, Astrocytoma, Oligodendroglioma, Meningioma, Pituitary Tumors, Medulloblastoma By End User Hospitals and Neuro-Oncology Centers, Diagnostic Imaging Centers, Specialty Diagnostic Laboratories, Academic and Research Institutes By Region North America, Europe, Asia-Pacific, Latin America, Middle East & Africa Country Scope U.S., Canada, Germany, U.K., France, China, India, Japan, Brazil, UAE, South Korea, South Africa Market Drivers - Rising adoption of multimodal diagnostics - Expansion of AI and liquid biopsy in neuro-oncology - Strategic government investments in diagnostic infrastructure Customization Option Available upon request Frequently Asked Question About This Report Q1: How big is the brain cancer diagnostics market? A1: The global brain cancer diagnostics market is valued at USD 2.7 billion in 2024, and is expected to reach USD 4.33 billion by 2030. Q2: What is the CAGR for the forecast period? A2: The market is projected to expand at a CAGR of 8.2% between 2024 and 2030. Q3: Who are the major players in this market? A3: Key players include GE HealthCare, Siemens Healthineers, Roche Diagnostics, Guardant Health, PathAI, and Tempus. Q4: Which region dominates the market share? A4: North America leads the market, driven by strong diagnostic infrastructure, high adoption of AI tools, and favorable reimbursement frameworks. Q5: What factors are driving this market? A5: Growth is fueled by rising demand for early tumor detection, expansion of AI in imaging, liquid biopsy innovations, and government funding for cancer diagnostics. Table of Contents - Global Brain Cancer Diagnostics Market Report (2024–2030) Executive Summary Market Overview Market Attractiveness by Diagnostic Modality, Cancer Type, End User, and Region Strategic Insights from Key Executives (CXO Perspective) Historical Market Size and Future Projections (2019–2030) Summary of Market Segmentation by Diagnostic Modality, Cancer Type, End User, and Region Market Share Analysis Leading Players by Revenue and Market Share Market Share Analysis by Diagnostic Modality, Cancer Type, and End User Investment Opportunities in the Brain Cancer Diagnostics Market Key Developments and Innovations Mergers, Acquisitions, and Strategic Partnerships High-Growth Segments for Investment Market Introduction Definition and Scope of the Study Market Structure and Key Findings Overview of Top Investment Pockets Research Methodology Research Process Overview Primary and Secondary Research Approaches Market Size Estimation and Forecasting Techniques Market Dynamics Key Market Drivers Challenges and Restraints Impacting Growth Emerging Opportunities for Stakeholders Impact of Behavioral and Regulatory Factors Government Policies and Approvals Shaping Diagnostics Global Brain Cancer Diagnostics Market Analysis Historical Market Size and Volume (2019–2023) Market Size and Volume Forecasts (2024–2030) Market Analysis by Diagnostic Modality Imaging (MRI, CT, PET, fMRI, MRS) Molecular and Genetic Testing Liquid Biopsy Immunohistochemistry (IHC) and In Situ Hybridization (ISH) AI-Powered Diagnostics and Radiogenomics Market Analysis by Cancer Type Glioblastoma Multiforme (GBM) Astrocytoma Oligodendroglioma Meningioma Pituitary Tumors Medulloblastoma Market Analysis by End User Hospitals and Neuro-Oncology Centers Diagnostic Imaging Centers Specialty Diagnostic Laboratories Academic and Research Institutes Market Analysis by Region North America Europe Asia-Pacific Latin America Middle East & Africa North America Brain Cancer Diagnostics Market Analysis Historical Market Size and Volume (2019–2023) Market Forecast (2024–2030) Market Analysis by Modality, Cancer Type, End User Country-Level Breakdown United States Canada Europe Brain Cancer Diagnostics Market Analysis Historical Market Size and Volume (2019–2023) Market Forecast (2024–2030) Market Analysis by Modality, Cancer Type, End User Country-Level Breakdown Germany United Kingdom France Italy Spain Rest of Europe Asia-Pacific Brain Cancer Diagnostics Market Analysis Historical Market Size and Volume (2019–2023) Market Forecast (2024–2030) Market Analysis by Modality, Cancer Type, End User Country-Level Breakdown China India Japan South Korea Rest of Asia-Pacific Latin America Brain Cancer Diagnostics Market Analysis Historical Market Size and Volume (2019–2023) Market Forecast (2024–2030) Market Analysis by Modality, Cancer Type, End User Country-Level Breakdown Brazil Argentina Rest of Latin America Middle East & Africa Brain Cancer Diagnostics Market Analysis Historical Market Size and Volume (2019–2023) Market Forecast (2024–2030) Market Analysis by Modality, Cancer Type, End User Country-Level Breakdown GCC Countries South Africa Rest of Middle East & Africa Key Players and Competitive Analysis GE HealthCare – Pioneer in MRI and Neuro-Imaging Siemens Healthineers – AI Integration and Imaging-Molecular Synergy Roche Diagnostics – Leader in CNS Molecular Testing Guardant Health – Liquid Biopsy Innovator in CNS Segment PathAI – AI-Driven Digital Pathology Player Tempus – Data-Driven Diagnostic and Clinical Analytics Provider Appendix Abbreviations and Terminologies Used in the Report References and Sources List of Tables Market Size by Diagnostic Modality, Cancer Type, End User, and Region (2024–2030) Regional Market Breakdown by Cancer Type and End User (2024–2030) List of Figures Market Dynamics: Drivers, Restraints, Opportunities, and Challenges Regional Market Snapshot for Key Regions Competitive Landscape and Market Share Analysis Growth Strategies Adopted by Key Players Market Share by Modality and End User (2024 vs. 2030)