info@strategicmarketresearch.com
26, Broadway, Suite 934, New York , 10004
United States Flag  US: +1-315-636-4233    United Kingdom Flag  UK: +44-162-237-0614    Indian Flag  IN: +91-826-083-6500
smrlogonew
  • Home
  • About
    • Why SMR
    • Research Methodology
    • Media Coverage
    • Join Our Team
  • Reports
    • Aerospace and Defense
    • Agriculture
    • Automotive
    • Chemicals and Materials
    • Consumer Goods
    • Energy and Power
    • Equipment and Machinery
    • Food and Beverages
    • Healthcare
    • Information and Communication Technology
    • Semiconductor and Electronics
    • Manufacturing and Construction
  • Our Practices
    • Syndicated Research
    • Consulting Services
    • Custom Research
    • Full-time Engagement Model
  • Insights
    • Press Release
    • Blog
  • Contact
Home » Blog » in silico drug discovery market accelerating drug development

In Silico Drug Discovery Market: Accelerating Drug Development

Posted On:   MAY-2025   |   Categories : Healthcare

In Silico Drug Discovery Market is using AI to cut costs and speed up R&D.

The term "in silico" describes computational models used to explore pharmacological hypotheses through various techniques, including databases, data analysis tools, data mining, homology models, machine learning, pharmacophores, quantitative structure-activity relationships, and network analysis tools.

 

The Global In-Silico Drug Discovery Market is projected to grow from $3.6 billion in 2024 to $6.8 billion by 2030, registering a CAGR of 11.2% during the forecast period.

 

In silico drug design utilizes computational techniques and models to identify drug-like molecules through bioinformatics tools. These methods help analyze and predict the biological activity of potential drug candidates while also assessing their physicochemical properties.

 

Traditional Drug Discovery V/S In-Silico Drug Discovery

Conventional drug design approaches require significant time and effort. In silico methods play a vital role in drug discovery and clinical research, offering cost efficiency, ethical advantages, and accelerated processes. As technology advances, these approaches are poised to become essential, fostering innovation, personalized medicine, and new breakthroughs in the biomedical field.

In 2024, the In-Silico Drug Discovery Market was valued at USD 3.6 billion, and it is projected to reach USD 6.8 billion by 2030, reflecting a robust compound annual growth rate (CAGR) of 11.20% during the forecast period. This surge is underpinned by the rising adoption of AI-led platforms, increasing pharmaceutical R&D digitization, and the shift toward in-silico-driven preclinical testing.

 

Feature

Traditional Drug Discovery

In Silico Drug Discovery

Approach

Lab-based

Computer-based

Speed

Slow

Fast

Cost

High

Lower

Accuracy

High (real systems)

Variable (model-dependent)

Scalability

Low

High

Use of AI/Data

Minimal

Extensive

Role in Pipeline

Validation & testing

Screening & prediction

According to industry, almost 35% of the total cost and time invested in developing a new drug can be saved by adopting an in-silico approach.

 

Role of Gen AI in Drug Discovery

Artificial Intelligence (AI) is increasingly at the forefront of drug discovery, especially in the screening and hit identification phase, where it enables faster, cost-efficient, and high-accuracy analysis of large chemical libraries. The AI-powered screening segment has emerged as one of the fastest-growing pillars of the in-silico drug discovery landscape.

 

Major Drug Candidates in Pipeline (2024–2025)

Drug Candidate / Code Name

Developer / Partner(s)

Target Indication

AI Platform Used

Current Phase

INS018_055

Insilico Medicine

Idiopathic Pulmonary Fibrosis

Pharma.AI + Chemistry42

Phase II (2025)

ISM5411

Insilico Medicine

Cancer (undisclosed target)

End-to-end AI screening

IND-enabling

CB-03

Isomorphic Labs + Novartis

Solid Tumors

AlphaFold-based structure design

Preclinical

BCL-2 Inhibitor (code TBA)

Valo Health + Novo Nordisk

Cardiometabolic Diseases

Opal Computational Platform

Discovery Stage

REL-101

Relation Therapeutics + GSK

Osteoarthritis

Human tissue-trained ML platform

Discovery Stage

EvT-MG Series (molecular glues)

Evotec + Bristol Myers Squibb

Oncology (CELMoD targets)

AI + PanOmics + High-throughput Docking

Lead Optimization

Absci AI-Engineered Antibody

Absci Corporation

Multiple Oncology Targets

Generative AI + Wet-lab synthesis

Discovery Stage

XTP-122

XtalPi

Advanced Solid Tumors

Quantum-AI hybrid platform

IND-enabling

Preclinical ADC Candidate

AION Labs (CombinAble.AI)

HER2-positive Cancers

AI-guided ADC linker optimization

Lead Generation

Undisclosed (Multi-target)

Exscientia + Sanofi

Oncology, Inflammation

Centaur Chemist™

Multiple Phases

 

Key Trends and Adoption Insights:

  • AI screening technologies are helping reduce early-stage R&D timelines by 6 to 9 months, with estimated 40% reductions in early-stage failure rates in projects adopting AI for lead prioritization.

  • Over 65% of top 50 pharmaceutical companies have implemented AI tools for target screening and hit triaging, either through in-house platforms or partnerships with AI-native biotechs.

  • More than 500 companies globally are actively working on AI screening platforms, with significant traction in the U.S., Europe, and select hubs in Asia-Pacific (Japan, South Korea, Singapore).

 

Emerging Platforms and Initiatives

Between October 2024 and March 2025, AION Labs launched several AI-driven startups, including ProPhet, focusing on identifying active small molecules; Promise Bio, developing an AI-powered epiproteomic platform for precision medicine; and CombinAble.AI, aimed at optimizing antibody properties. These initiatives highlight the growing emphasis on AI in drug discovery and development.

In February 2025, XtalPi announced plans to raise HK$2.08 billion ($267 million) through a share placement to support its "AI+ Technology and Industry Integration Innovation Consortium Project" in the Greater Bay Area. XtalPi leverages AI, quantum physics, and automation to accelerate pharmaceutical research and has partnerships with major pharmaceutical companies.

 

Strategic Partnerships & Collaborations

  • Evotec SE and Bristol Myers Squibb: In April 2025, Evotec announced significant progress in its collaboration with Bristol Myers Squibb, focusing on molecular glue-based drug discovery. This partnership, initiated in 2018 and expanded in 2022, combines Evotec's PanOmics and AI-supported platforms with Bristol Myers Squibb's CELMoD™ library. The collaboration has yielded a growing pipeline of molecular degraders targeting high-value oncology and other indications, resulting in $75 million in milestone payments to Evotec.

  • Novo Nordisk and Valo Health: In January 2025, Novo Nordisk expanded its agreement with Valo Health to develop treatments for obesity, type 2 diabetes, and cardiovascular diseases. The extended deal includes near-term payments up to $190 million and potential milestone payments totaling $1.9 billion for nine new drug programs. The collaboration leverages Valo's AI-driven, human-centric drug discovery platform.

  • GSK and Relation Therapeutics: In December 2024, GSK entered a $300 million partnership with UK-based Relation Therapeutics to develop treatments for osteoarthritis and fibrotic diseases. Relation applies machine learning to generate data from human tissue, aiming to reduce drug discovery costs and failures. The deal includes a $45 million initial payment, with potential success-based payments up to $263 million per drug target.

 

Convergence Trends Redefining the Market

  • From Workflow Silos to Integrated AI Pipelines: Early adopters like Recursion, Exscientia, and Insilico Medicine are collapsing the traditional walls between target ID, hit generation, and lead optimization through AI/automation fusion.

  • From Point Solutions to End-to-End Stack Providers: Big pharma increasingly favors partners who can handle multi-omics integration, simulation, and AI-guided candidate selection under one roof.

  • From Experimental First to Hypothesis-First R&D: In-silico predictions are now dictating which biology to test, not just how to optimize it—flipping the traditional paradigm and accelerating decisions at preclinical stages.

Trust Online

  • paypal.png
  • wiretransfers

Follow Us

  • facebook
  • twitter
  • instagram
  • linkedin

Contact Us

  • US: (+1) 315-636-4233
  • UK: (+44) 1622-370-614
  • IN: (+91) 826-083-6500
  • info@strategicmarketresearch.com
  • Strategic Market Research
    26, Broadway Suite 934, New York , 10004

Quick Link

  • Why SMR
  • Research Methodology
  • Media Coverage
  • Join Our Team
  • Press Release
  • Blog

Customer Support

  • FAQs
  • Contact
  • Terms of Use
  • Privacy Policy
  • Disclaimer Policy
  • Return Policy
Copyright © 2022 Strategic Market Research All rights reserved.