Posted On: SEP-2025 | Categories : Healthcare
Cancer has long been described as the “emperor of all maladies,” not only because of its devastating global burden but also because of its complexity. In 2022 alone, the World Health Organization (WHO) reported nearly 20 million new cancer diagnoses and 9.7 million deaths worldwide, making it the second leading cause of mortality after cardiovascular disease. Projections suggest that by 2040, the global cancer burden could rise to 29–30 million new cases annually, fueled by aging populations, lifestyle risk factors, and genetic predispositions. Despite unprecedented advances in diagnostics, targeted therapies, and immuno-oncology, the path to timely detection and effective treatment remains riddled with challenges.
Enter Artificial Intelligence—a technology that is no longer confined to futuristic visions but is actively reshaping oncology today. AI and its subset, machine learning (ML), bring computational power and pattern-recognition capabilities far beyond human ability. By analyzing vast datasets ranging from pathology slides and radiology images to genomic profiles and electronic health records, AI is enabling oncologists to uncover insights at speeds and scales once unimaginable.
The impact is already measurable. The global AI in oncology market, valued at USD 1.1 billion in 2023, is forecast to reach USD 9.2 billion by 2030, growing at a CAGR of nearly 35%.
Immunotherapy has been one of the most exciting breakthroughs in cancer treatment, but it still benefits only a minority of patients. Today, just 20–30% of individuals respond positively to immune checkpoint inhibitors, meaning most patients do not gain the life-extending results these therapies can deliver. Artificial intelligence is beginning to change this by offering a more precise way to match treatments to patients, predict side effects, and accelerate the development of new immunotherapies.
Smarter Patient Stratification
Traditional biomarkers, such as PD-L1 expression, have limited predictive power, with accuracy levels hovering around 60% in forecasting immunotherapy response. By contrast, AI models that integrate multi-omics data—genomics, proteomics, and pathology images—are achieving 85–90% predictive accuracy. In practice, this means oncologists can identify a much larger proportion of patients who are genuinely likely to respond to immunotherapy. In fact, studies show AI-driven tumor microenvironment analysis has expanded the pool of eligible patients by up to 15% compared to standard methods.
Driving Cancer Vaccine Development
AI is also speeding the search for effective cancer vaccines. Neoantigen discovery traditionally produces thousands of candidates, but only a few turn out to be clinically useful. Machine learning algorithms are improving the process, narrowing the field with >85% accuracy in predicting which peptides will trigger strong T-cell responses. This has reduced vaccine development costs and timelines by nearly 50%, enabling faster entry into clinical trials.
Reducing Treatment Risks
One of the drawbacks of immunotherapy is the risk of severe immune-related toxicities. Here, too, AI is making a measurable difference. Predictive models trained on large patient datasets can forecast adverse effects before they occur, reducing serious toxicities by 25–30% through early dose adjustments and supportive care planning. This ensures safer treatment and improves patient quality of life during therapy.
Raising the Ceiling of Effectiveness
Taken together, these advances point to a significant shift in how immunotherapy will be deployed in the future. With AI-enhanced patient selection, predictive biomarkers, and toxicity management, effective response rates could rise from ~25% today to as high as 40–50% by 2035. Clinical trial processes are also benefiting, with AI accelerating patient matching and enrollment by 15–20%, ensuring that therapies reach patients faster.
In short, immunotherapy is evolving, and its future impact will depend on AI. By ensuring the right patient receives the right therapy at the right time—and by making treatment safer and more accessible—AI is unlocking the full potential of one of oncology’s most powerful tools.
AI detects 20–40% of interval breast cancers that radiologists initially miss on mammograms.
In the PRAIM trial, AI-supported screening found 6.7 cancers per 1,000 women compared to 5.7 per 1,000 with standard double reading (a 17.6% increase).
Biopsy positive predictive value (PPV) improved from 59.2% to 64.5% with AI-supported screening.
AI clinical trial matching tools achieve 90.5% sensitivity and 99.3% specificity in identifying eligible patients.
Natural Language Processing (NLP) filters using AI can shrink candidate trial pools by 85–90%, saving screening time.
AI models for adverse drug reaction prediction in cancer patients show 82% sensitivity, 84% specificity, and AUC ~0.83.
Deep learning algorithms in cancer histopathology report accuracies between 63% and 100%, depending on cancer type.
Machine learning for glioma detection using plasma profiles reached 92% accuracy.
An AI agent integrating multimodal oncology data achieved 87.5% accuracy and 91% correct clinical conclusions in simulated cases.
Harvard’s CHIEF AI model achieved 94% accuracy in cancer detection and >70% accuracy in predicting mutations in 54 commonly mutated genes from pathology images.
AI support improved pathologists’ HER2 classification accuracy from 66.7% to 88.5%, reducing misclassification from 29.5% to 4.0%.
An AI tool predicted breast cancer–related lymphoedema with 73.4% overall accuracy, correctly identifying 81.6% of true cases.
Systematic reviews show top-performing oncology AI algorithms reach 95.6% accuracy, with averages around 92%.
In drug response prediction, AI-guided therapy kept cancer “under control” longer in 54% of patients compared to their prior treatment.
AI plus Raman-Histology diagnosed brain tumors with 94.6% accuracy in 150 seconds, compared to 93.9% accuracy in 20–30 minutes by standard pathology.
Clinical decision support systems (CDSS) for breast cancer trial eligibility achieved 87.6% accuracy, with 81% sensitivity and 89% specificity.
Breast Cancer
Breast cancer is the most diagnosed cancer in women worldwide, with 2.3 million new cases annually. Mammography has long been the gold standard, but AI is making it far more accurate. In large-scale trials, AI-assisted mammograms improved detection rates by 17.6%, identifying 6.7 cancers per 1,000 women screened versus 5.7 without AI. AI also reduces false positives by up to 20%, lowering unnecessary biopsies. In pathology, AI support boosted HER2 classification accuracy from 66.7% to 88.5%, dramatically improving treatment selection.
AI-assisted mammography improves accuracy by 11–15% compared to radiologists alone.
False positives in breast screening can be reduced by up to 20% using AI, lowering unnecessary biopsies.
AI tools detect breast cancers that appear 1–2 years earlier than traditional methods, enabling earlier intervention.
Radiologist workload can be reduced by 40–45% with AI-supported mammogram readings.
In large clinical trials, AI-supported screening increased detection rates from 5.7 to 6.7 cancers per 1,000 women screened (a 17.6% improvement).
Positive predictive value (PPV) of biopsy improved from 59% to 65% when mammography was supported by AI.
AI models trained on multi-ethnic datasets demonstrated sensitivity above 90%, ensuring better performance across diverse populations.
Early studies suggest that wide adoption of AI-assisted mammography could reduce global breast cancer mortality by 10–15% by 2040.
Lung Cancer
Lung cancer accounts for the highest cancer mortality worldwide. Early detection is critical, yet traditional CT scans often result in missed nodules or false positives. AI-enabled radiology models have achieved sensitivity levels above 90% in detecting small lung nodules, sometimes 2–3 years earlier than standard readings. In clinical practice, AI-driven CT analysis has been shown to reduce false positive rates by 11–13%, saving patients from unnecessary invasive procedures.
AI-enabled CT analysis achieves >90% sensitivity in detecting small lung nodules.
AI can detect cancers 2–3 years earlier than standard CT readings.
Clinical trials show AI-supported LDCT reduces false positives by 11–13%.
AI-assisted risk models improve early detection of lung cancer by ~20%, especially in high-risk populations.
Automated nodule classification tools reduce unnecessary follow-up scans by 15–20%.
AI integration into pathology workflows boosts accuracy in identifying actionable mutations (e.g., EGFR, ALK) to >95%.
Multi-omics AI models improve therapy response prediction, expanding effective patient targeting by ~30%.
If widely adopted, AI-enhanced screening and treatment planning could cut global lung cancer mortality by 8–12% by 2040.
Colorectal Cancer
Colorectal cancer is the second leading cause of cancer deaths worldwide, with over 1.9 million new cases annually. Colonoscopy remains the gold standard for detection, but even experienced gastroenterologists can miss adenomas and polyps. AI is changing this by acting as a “second reader” during colonoscopies.
AI-assisted colonoscopy systems have increased adenoma detection rates by 14–20%, ensuring precancerous lesions are identified and removed earlier. Blood-based AI tests, such as multiomics liquid biopsies, have also shown promise, achieving 79% sensitivity and 91% specificity for colorectal cancer, with near-perfect detection in advanced stages. These advances are bringing us closer to non-invasive, large-scale screening that can save thousands of lives.
AI-assisted colonoscopy increases adenoma detection rates by 14–20%.
Blood-based AI screening shows 79% sensitivity and 91% specificity for colorectal cancer.
Stage II and Stage IV cancers detected with 100% sensitivity in AI blood tests.
Stage I detection rates around 57%, showing strong early-stage promise.
AI reduces “miss rates” for small polyps by ~30%.
Wide adoption of AI colorectal screening could reduce mortality by 12–15% by 2040.
Prostate Cancer
Prostate cancer is one of the most commonly diagnosed cancers in men, with nearly 1.4 million new cases annually. Diagnosis often relies on biopsy review, which can be subjective. AI-powered pathology systems like Paige Prostate Detect are revolutionizing accuracy and consistency.
In clinical studies, AI increased sensitivity in detecting prostate cancer from 88.7% to 96.6% and specificity from 97.3% to 98%, reducing false negatives by 70%. AI also helps stratify patients for aggressive versus indolent disease, reducing overtreatment and guiding personalized management.
AI pathology boosts sensitivity to 96.6% and specificity to 98%.
False negatives reduced by 70%, false positives by 24%.
Prostate cancer risk stratification improved by 30–35% with AI-supported models.
AI improves detection of clinically significant prostate cancers, raising accuracy by ~15% compared to pathologists alone.
If implemented widely, AI could reduce prostate cancer overtreatment rates by 20–25%.
Skin Cancer
Skin cancer, particularly melanoma, is one of the most preventable yet often misdiagnosed cancers. Dermatologists depend heavily on visual inspection, but AI models trained on dermoscopic images have reached dermatologist-level performance.
AI systems now achieve >95% accuracy in distinguishing malignant from benign lesions, sometimes surpassing human experts. In teledermatology, these tools extend specialist expertise to remote or underserved areas, where access to dermatologists is limited. With mobile-based AI tools, early detection can be democratized globally.
AI achieves >95% accuracy in distinguishing malignant vs benign lesions.
In melanoma detection, AI sensitivity reaches 94–97%, on par with or above dermatologists.
False negative rates reduced by ~30% with AI-assisted dermoscopy.
Mobile-based AI tools extend access to dermatology screening for millions.
AI-driven skin cancer screening could lower melanoma mortality by 15–20% by 2040.
Brain Tumors
Brain tumors remain among the most complex cancers to diagnose and treat. Traditionally, pathology reviews of biopsies can take 20–30 minutes—time that’s critical during neurosurgery. AI has drastically sped up this process.
AI-enhanced Raman histology has classified brain tumors with 94.6% accuracy in under 150 seconds, enabling real-time surgical decision-making. Deep learning models combining MRI, pathology, and genomics also predict tumor subtypes and treatment responses with high precision, improving patient management and outcomes.
AI-enhanced Raman histology achieves 94.6% accuracy in <3 minutes.
Traditional pathology achieves ~94% accuracy, but requires 20–30 minutes.
AI MRI analysis detects tumor boundaries with >90% accuracy, aiding neurosurgeons.
AI pathology improves classification of gliomas and astrocytomas by ~20% over manual review.
Early adoption of AI in brain tumor care could reduce surgical errors and recurrence rates by 15–18%.
IBM Watson for Oncology has been implemented in hospitals across Asia, including China, India, and Thailand, as a decision-support system for oncologists. In clinical evaluations, Watson’s treatment recommendations showed high concordance with multidisciplinary tumor boards: around 96% for ovarian cancer, above 80% for breast and lung cancers, and 74% for rectal cancer. However, concordance was lower in colon and cervical cancers (~64%) and very low in gastric cancer (~12%). By 2020, Watson was deployed in more than 80 hospitals in China, helping clinicians generate individualized treatment plans and supporting evidence-based oncology practices.
PathAI develops deep learning-based pathology solutions used in global clinical trials to improve accuracy and efficiency. When pathologists were supported by PathAI tools, diagnostic performance improved significantly: false negatives decreased by 70% and false positives by 24%. Sensitivity in detecting prostate cancer increased from 88.7% to 96.6%, while specificity improved from 97.3% to 98%. PathAI’s pan-tissue models have also demonstrated improvements in overall cancer detection by 7–8% compared with human pathologists alone, underscoring its role in reducing diagnostic variability and increasing consistency across studies.
Tempus provides a powerful platform combining genomic sequencing, clinical data integration, and real-world evidence analytics. In large pan-cancer studies, Tempus demonstrated that 9% of actionable variants were found only through liquid biopsy testing—variants that would have been missed by tumor tissue analysis alone. Adding RNA sequencing to DNA analysis increased detection of actionable fusions by nearly 30%, ensuring more patients are identified for targeted therapies. Its matched tumor-normal testing also reduced false-positive results by 28%, improving confidence in clinical decision-making. Tempus’s datasets, encompassing millions of clinical records, now represent one of the world’s largest oncology-specific genomic and real-world data libraries.
Freenome focuses on early cancer detection through multiomics blood testing powered by AI. In its landmark PREEMPT CRC trial with nearly 49,000 participants, the Freenome blood test achieved 79% overall sensitivity for colorectal cancer and 91% specificity in detecting true negatives. Detection performance varied by stage: 57% in Stage I, 100% in Stage II, 82% in Stage III, and 100% in Stage IV. While sensitivity for advanced adenomas was lower (~12%), the test’s strong performance in early-stage cancers demonstrates its promise as a non-invasive screening tool. Freenome is expanding research into other cancers such as pancreatic, breast, and lung, aiming to bring blood-based multi-cancer early detection into routine practice.
Paige.AI is a leader in AI-enabled digital pathology, with its Paige Prostate Detect becoming the first FDA-authorized AI tool in pathology. Clinical trials showed major improvements: sensitivity for prostate cancer detection rose from 88.7% to 96.6%, and specificity increased from 97.3% to 98% when pathologists used Paige’s platform. The AI reduced false-negative diagnoses by 70% and false positives by 24% compared with unaided pathologists. Beyond prostate cancer, Paige has digitized over 4 million cancer slides from more than 1,000 institutions across 45 countries, training its AI to recognize a wide spectrum of malignancies. This global scale positions Paige as a frontrunner in making digital pathology an everyday clinical reality.
The convergence of artificial intelligence and oncology has given rise to a new generation of “AI-native” researchers—scientists who are as fluent in algorithms and data science as they are in cancer biology and clinical medicine. Unlike earlier decades, where computational support was an add-on to traditional research, today’s innovators are embedding AI directly into the heart of experimental design, biomarker discovery, and clinical translation.
This new cohort is reshaping how cancer research is conducted. Many early-career oncologists and computational biologists now begin their training with a dual focus: machine learning methods on one hand, and genomic, proteomic, and imaging data on the other. As a result, they approach cancer not just as a biological disease, but as a complex data problem that can be decoded with advanced algorithms. For instance, PhD students and postdoctoral fellows are publishing AI-driven oncology studies at unprecedented rates—PubMed indexed more than 8,000 AI-in-oncology papers in 2024, compared to fewer than 500 a decade ago.
These AI-native researchers are also fueling a surge in entrepreneurship. By 2025, analysts expect more than 400 oncology-focused AI startups to be operating globally, many founded by individuals under 40. Their innovations span from AI models that predict immunotherapy response to tools that integrate digital pathology, radiology, and genomics in a single platform. Importantly, these scientists are championing open data and collaborative ecosystems, ensuring models are trained on diverse, representative datasets rather than siloed institutional samples.
What distinguishes this generation is their mindset: they are not simply applying AI to existing workflows, but reimagining the entire cancer research pipeline. From designing adaptive clinical trials to building AI-powered drug discovery platforms, these researchers are driving oncology toward an era where data and biology are inseparable. Their work signals a future in which the fight against cancer is not only biologically precise but computationally intelligent.
Governments worldwide are increasingly recognizing the potential of artificial intelligence to accelerate cancer research, improve diagnostics, and lower treatment costs. Multiple agencies and funding programs are actively supporting AI-driven oncology initiatives.
National Cancer Institute (NCI) – USA
The NCI provides significant grants and contracts to support AI in oncology, focusing on projects that leverage advanced data science for cancer prevention, diagnosis, and therapy. Dedicated programs such as the Informatics Technology for Cancer Research (ITCR) and the Cancer Systems Biology Consortium (CSBC) channel funding toward developing algorithms, computational models, and digital infrastructure.
National Science Foundation (NSF) – USA
The NSF invests heavily in cross-disciplinary projects combining AI, biomedical research, and health. Programs such as Smart Health and Biomedical Research in the Era of Artificial Intelligence and Advanced Data Science allocate over $15–20 million annually to projects that explore how AI can transform healthcare, including oncology.
Advanced Research Projects Agency for Health (ARPA-H) – USA
ARPA-H funds high-risk, high-reward research that has the potential to revolutionize cancer therapy. Recent grants of up to $15 million have been directed at projects using AI and machine learning to mine large datasets for novel treatments, particularly for drug-resistant cancers.
Veterans Affairs (VA) and National Institutes of Health (NIH) – USA
The VA and NIH co-fund AI-based cancer risk stratification and imaging projects, with awards ranging from $4–7 million for specific initiatives. These projects target conditions like prostate and head-and-neck cancers, with a strong focus on improving patient outcomes in underserved populations such as veterans.
Global Collaborative Programs
Beyond the U.S., international collaborations are funding AI in oncology. For example, multi-country efforts are providing multi-million-dollar grants and cloud computing resources to support ovarian cancer research, with the goal of improving survival rates through AI-enhanced data analysis.
The Future of AI in Cancer Care
Artificial intelligence is no longer a supplementary tool in oncology—it is becoming a foundational component of how cancer will be detected, diagnosed, and treated in the coming decades. By 2030, the global AI in oncology market is expected to grow from USD 1.1 billion in 2023 to USD 9.2 billion, at a compound annual growth rate (CAGR) of nearly 35%. This rapid expansion reflects the technology’s transformative potential in reshaping patient care, drug discovery, and healthcare delivery models.
Early Detection and Screening
Early cancer detection saves lives, yet many tumors are still discovered at advanced stages. AI-enabled imaging and liquid biopsy tools are poised to close this gap. Clinical trials have already shown that AI-assisted mammography improves detection rates by 17.6% and can identify cancers 1–2 years earlier than radiologists alone. In lung cancer, AI-powered CT analysis achieves >90% sensitivity in detecting nodules, reducing false positives by 11–13%. If adopted at scale, experts estimate AI could reduce global cancer mortality by 10–15% by 2040.
Personalized Treatment Pathways
The future of cancer therapy is personalization—and AI will be its driving engine. Digital twin models that simulate a patient’s tumor biology are expected to reduce treatment selection errors by up to 25%, ensuring more effective care. AI has also improved therapy response prediction, with multi-omics models expanding accurate patient targeting by ~30% compared to current standards. By 2035, analysts expect 30–40% of new cancer drugs will incorporate AI in at least one stage of their development process.
Accelerating Drug Discovery
Drug development is slow and costly, with a single oncology drug requiring an average of USD 2.3 billion and 10–15 years to reach approval. AI platforms are already compressing this timeline dramatically—reducing early discovery from 5–6 years to under 18 months. This acceleration could bring dozens of first-in-class therapies to patients years earlier, while cutting costs by up to 50% in preclinical stages.
AI-Integrated Clinical Care
By 2030, more than 60% of cancer centers worldwide are projected to use AI in radiology, pathology, and genomics workflows. Radiology AI reduces workload by 40–45%, while pathology AI accelerates slide review by 70%, achieving accuracy rates above 95% in detecting cancers such as prostate, breast, and skin. Clinical trial recruitment, another bottleneck, is also benefiting: AI-assisted patient matching has reduced screening time and accelerated enrollment by 15–20%.
Expanding Access and Equity
AI is not just a technology for advanced hospitals—it can extend oncology expertise to underserved regions. AI-powered tele-oncology platforms and cloud-based pathology systems are forecast to increase cancer screening coverage in low- and middle-income countries by 15–20% by 2030. This democratization of cancer care could help bridge the global survival gap, where patients in high-income countries are currently twice as likely to survive compared to those in low-income settings.
The Road Ahead
The future of AI in cancer care is clear: earlier diagnoses, personalized therapies, faster drug pipelines, and broader access. With AI, oncologists will be empowered rather than replaced—using data-driven insights to deliver care that is not only more accurate but also more humane. If current adoption trends continue, by 2040 AI will not just support oncology, it will define it—making cancer care smarter, faster, and more equitable.
https://www.cancer.gov/research/infrastructure/artificial-intelligence
https://pmc.ncbi.nlm.nih.gov/articles/PMC11170282/
https://jamanetwork.com/journals/jamaoncology/fullarticle/2816976
https://www.cancerresearch.org/blog/ai-cancer
https://hms.harvard.edu/news/new-artificial-intelligence-tool-cancer
https://www.aacr.org/blog/2025/08/18/eye-on-ai-applying-artificial-intelligence-to-drive-cancer-research-part-2/
https://www.mdpi.com/2227-9059/13/4/951
https://oncodaily.com/oncolibrary/ai-tools-for-medical-oncologists
https://www.asco.org/news-initiatives/current-initiatives/ai-oncology
https://www.frontiersin.org/journals/digital-health/articles/10.3389/fdgth.2025.1550407/full
https://ascopubs.org/doi/10.1200/EDBK_350652
https://www.aiforoncology.it/
https://pubmed.ncbi.nlm.nih.gov/38597966/
https://www.nature.com/articles/s41416-021-01633-1
https://www.ncoda.org/wp-content/uploads/2025/04/The-Future-of-Oncology-How-AI-Will-Shape-the-Next-Decade.pdf
https://www.dgho.de/arbeitskreise/i-k/kuenstliche-intelligenz/dokumente-des-arbeitskreises/roadmap-for-ai-in-hematology-and-oncology.pdf
https://acsjournals.onlinelibrary.wiley.com/doi/pdf/10.1002/cncr.35307
https://www.cell.com/cancer-cell/pdf/S1535-6108(21)00210-5.pdf
https://cris.maastrichtuniversity.nl/ws/portalfiles/portal/75369929/Aerts_2020_Artificial_intelligence_in_radiation_oncology.pdf